Advertisement

Biotechnology and Bioprocess Engineering

, Volume 18, Issue 4, pp 778–786 | Cite as

Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes

  • Prakarn Rudeekulthamrong
  • Komkrich Sawasdee
  • Jarunee KaulpiboonEmail author
Research Paper Enzyme Biotechnology

Abstract

Amylomaltase and transglucosidase were combined to produce long-chain isomaltooligosaccharides (IMOs). IMOs are effective prebiotics that stimulate the growth of healthy bacteria in human intestines and thus promote better overall health. In this study, the p17bAMY amylomaltase was expressed from its gene, which had been directly isolated from soil samples, while transglucosidase was purchased and purified by a gel-filtration column. Crude amylomaltase was purified by heat treatment, Q-, and phenyl-sepharose column. The purified amylomaltase had a molecular weight of 57 kDa. Specificity on the substrates of the amylomaltase was also studied and it was found that this enzyme was able to catalyze transglucosylation activity using substrates G2 to G7. However, G3 was the most preferred substrate for the enzyme. Here, K m-G3 and k cat/K m were 23 mM and 1.72 × 108 mM/min, respectively. Amylomaltase and transglucosidase were tested both alone and in combination on a G3 substrate to study the efficient process for the IMOs production. The obtained products from the enzymatic reactions were monitored using the TLC analytical method and a densitometer. The amylomaltase led to products containing linear maltooligosaccharides, while the transglucosidase produced short-chain IMOs. Interestingly, when amylomaltase and transglucosidase were used in combination, long-chain IMOs with sizes larger than IMO4 were observed under the determined condition.

Keywords

amylomaltase isomaltooligosaccharides (IMOs) prebiotic transglucosidase transglucosylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Takaha, T. and S. M. Smith (1999) The functions of 4-alpha-glucanotransferases and their use for the production of cyclic glucans. Biotechnol. Genet. Eng. 16: 257–280.CrossRefGoogle Scholar
  2. 2.
    Pugsley, A. P. and C. Dubreuil (1998) Molecular characterization of malQ, the structural gene for the Escherichia coli enzyme amylomaltase. Mol. Microbiol. 2: 473–479.CrossRefGoogle Scholar
  3. 3.
    Goda, S., O. Eissa, M. Akhtar, and N. Minton (1997) Molecular analysis of a Clostridium butyricum NCIMB 7423 gene encoding 4-alpha-glucanotransferase and characterization of the recombinant enzyme produced in Escherichia coli. Microbiol. 143: 3287–3294.CrossRefGoogle Scholar
  4. 4.
    Jeon, B., H. Taguchi, H. Sakai, T. Ohshima, T. Wakagi, and H. Matsuzawa (1997) 4-alpha-glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis-enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248: 171–178.CrossRefGoogle Scholar
  5. 5.
    Terada, Y., K. Fujii, T. Takaha, and S. Okada (1999) Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: Production of cycloamylose. Appl. Environ. Microb. 65: 910–915.Google Scholar
  6. 6.
    Bhuiyan, S. H., M. Kitaoka, and K. Hayashi (2003) A cycloamylose-forming hyperthermostable 4-α-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. J. Mol. Catal. B: Enzym. 22: 45–53.CrossRefGoogle Scholar
  7. 7.
    Kaper, T., B. Talik, T. J. Ettema, H. Bos, M. J. van der maarel, and L. Dijkhuizen (2005) Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels. Appl. Environ. Microb. 71: 5098–5106.CrossRefGoogle Scholar
  8. 8.
    Bang, B. Y., H. J. Kim, H. Y. Kim, M. Y. Baik, S. C. Ahn, C. H. Kim, and C. S. Park (2006) Cloning and overexpression of 4-α-glucanotransferase from Thermus brockianus (TBGT) in E. coli. J. Microbiol. Biotechnol. 16: 1809–1813.Google Scholar
  9. 9.
    Lee, B. H., D. K. Oh, and S. H. Yoo (2009) Characterization of 4-alpha-glucanotransferase from Synechocystis sp. PCC 6803 and its application to various corn starches. N. Biotechol. 26: 29–36.CrossRefGoogle Scholar
  10. 10.
    Srisimarat, W., A. Powviriyakul, J. Kaulpiboon, K. Krusong, W. Zimmermann, and P. Pongsawasdi (2010) A novel amylomaltase from Corynebacterium glutamicum and analysis of the large-ring cyclodextrin products. J. Incl. Phenom. Macro. 70: 369–375.CrossRefGoogle Scholar
  11. 11.
    Lin, T. P. and J. Preiss (1987) Characterization of D-enzyme (4-α-glucanotransferase) in arabidopsis leaf. Plant Physiol. 86: 260–265.CrossRefGoogle Scholar
  12. 12.
    Lee, H. S., J. H. Auh, H. G. Yoon, M. J. Kim, J. H. Park, S. S. Hong, M. H. Kang, T. J. Kim, T. W. Moon, J. W. Kim, and K. H. Park (2002) Cooperative action of alpha-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production. J. Agr. Food Chem. 50: 2812–2817.CrossRefGoogle Scholar
  13. 13.
    Gibson, G. R. and R. A. Rastal (2006) Prebiotics: Development & Application. pp. 42–46. John Wiley & Sons, Ltd., West Sussex, England.CrossRefGoogle Scholar
  14. 14.
    Goulas, A. K., D. A. Fisher, G. K. Grimble, A. S. Grandison, and R. A. Rastall (2004) Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase. Enz. Microb. Technol. 35: 327–388.CrossRefGoogle Scholar
  15. 15.
    Pan, Y. C. and W. C. Lee (2005) Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells. Biotechnol. Bioeng. 89: 797–804.CrossRefGoogle Scholar
  16. 16.
    Sawasdee, K. (2012) Expression and characterization of amylomaltase gene cloned directly from soil bacterial DNA. M. Sc. Thesis. Thammasat University, Bangkok, Thailand.Google Scholar
  17. 17.
    Bradford, M. M. (1976) A rapid and sensitive method for the qualitatively of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  18. 18.
    Weber, K. and M. Osborn (1975) Proteins and SDS: Molecular weight determination on polyacrylamide gels and related procedures. pp. 179–233. In: H. Neurath, R. L. Hill, and C. Border (eds.). The Proteins. Academic Press, NY, USA.Google Scholar
  19. 19.
    Robyt, J. F. and R. Mukerjea (1994) Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohyd. Res. 251: 187–202.CrossRefGoogle Scholar
  20. 20.
    Vetere, A., A. Gamini, C. Campa, and S. Paoletti (2000) Regiospecific transglycolytic synthesis and structural characterization of 6-O-α-glucopyranosyl-glucopyranose (isomaltose). Biochem. Biophys. Res. Commum. 274: 99–104.CrossRefGoogle Scholar
  21. 21.
    Yamamoto, T., T. Unno, Y. Watanabe, M. Yamamoto, M. Okuyama, H. Mori, S. Chiba, and A. Kimura (2004) Purification and characterization of Acremonium implicatum α-glucosidase having regioselectivity for α-1,3-glucosidic linkage. Biochim. Biophys. Acta 1700: 189–198.CrossRefGoogle Scholar
  22. 22.
    Zhou, C., Y. Xue, Y. Zhang, Y. Zeng1, and Y. Ma (2009) Recombinant expression and characterization of Thermoanaerobactertengcongensis thermostable α-glucosidase with regioselectivity for high-yield isomalto oligosaccharides synthesis. J. Microbiol. Biotechnol. 19: 1547–1556.CrossRefGoogle Scholar
  23. 23.
    Kita, A., H. Matsui, A. Somoto, A. Kimura, M. Takata, and S. Chiba (1991) Substrate specificity and subsite affinities of crystalline alpha-glucosidase from Aspergillus niger. Agric. Biol. Chem. 55: 2327–2335.CrossRefGoogle Scholar
  24. 24.
    Lee, M. S., S. K. Cho, H. J. Eom, S. Y. Kim, T. J. Kim, and N. S. Han (2008) Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F. J. Microbiol. Biotechnol. 18: 1141–1145.Google Scholar
  25. 25.
    Kaneko, T., T. Kohmoto, H. Kikuchi, M. Shiota, and H. Lino (1994) Effect of isomaltooligosaccharides with different degrees of polymerization on human fecal Bifidobacteria. Biosci. Biotechnol. Biochem. 58: 2288–2290.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Prakarn Rudeekulthamrong
    • 1
  • Komkrich Sawasdee
    • 2
  • Jarunee Kaulpiboon
    • 3
    Email author
  1. 1.Department of Biochemistry, Phramongkutklao College of MedicinePhramongkutklao HospitalBangkokThailand
  2. 2.Biochemistry and Molecular Biology Program, Faculty of MedicineThammasat UniversityPathumthaniThailand
  3. 3.Department of Pre-Clinical Science (Biochemistry), Faculty of MedicineThammasat UniversityPathumthaniThailand

Personalised recommendations