Advertisement

Biotechnology and Bioprocess Engineering

, Volume 18, Issue 3, pp 560–566 | Cite as

Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing

  • Steven D. Branston
  • Emma C. Stanley
  • John M. Ward
  • Eli Keshavarz-Moore
Research Paper

Abstract

Bacteriophages are naturally infectious particles that replicate extremely efficiently in their bacterial hosts. Consequently, a facility processing bioproducts from a bacterial strain would be typically expected to focus on avoiding bacteriophage contamination. However, bacteriophages themselves are now showing great promise as a whole new class of industrial agents, such as biologically based nano-materials, delivery vectors and antimicrobials. This therefore raises a new challenge for their large-scale manufacture, potentially in contracted facilities shared with the host organism. The key issue is that knowledge of individual bacteriophage behaviour in the face of physical and chemical challenges is frequently incomplete, complicating decision-making regarding their safe introduction to a facility. This study tackles this issue for the filamentous bacteriophage M13. It was found that experimentation to determine an effective decontamination agent was important: Two of the three tested were ineffective. Virkon was considered to be the disinfectant of choice. Bacteriophage M13 was confirmed to be highly desiccation resistant, exhibiting a half-life of up to 120 days. Conversely, it was completely inactivated by strongly acidic and alkaline conditions and by temperatures above 95°C. By understanding the response of a bacteriophage to these challenges, steps towards their sustainable manufacture can be achieved.

Keywords

filamentous bacteriophage M13 disinfectant pH temperature desiccation bioprocessing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hagens, S., A. Habel, and U. Blasi (2006) Augmentation of the antimicrobial efficacy of antibiotics by filamentous phage. Microb. Drug Resist. 12: 164–168.CrossRefGoogle Scholar
  2. 2.
    Lankes, H., C. Zanghi, K. Santos, C. Capella, C. Duke, and S. Dewhurst (2007) In vivo gene delivery and expression by bacteriophage lambda vectors. J. Appl. Microbiol. 102: 1337–1349.CrossRefGoogle Scholar
  3. 3.
    Solomon, B. (2008) Filamentous bacteriophage as a novel therapeutic tool for Alzheimer’s Disease treatment. J. Alzheimer’s Dis. 15: 193–198.Google Scholar
  4. 4.
    Wright, A., C. Hawkins, E. Anggard, and D. Harper (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa: A preliminary report of efficacy. Clin. Otolaryngol. 34: 349–357.CrossRefGoogle Scholar
  5. 5.
    Housby, J. and N. Mann (2009) Phage therapy. Drug Discov. Today 14: 536–540.CrossRefGoogle Scholar
  6. 6.
    Liang, Y., B. Shi, J. Zhang, H. Jiang, Y. Xu, Z. Li, and J. Gu (2006) Better gene expression by (−) gene than by (+) gene in phage gene delivery systems. Biotechnol. Prog. 22: 626–630.CrossRefGoogle Scholar
  7. 7.
    Lee, B. Y., J. Zhang, C. Zueger, W. J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh, and S. W. Lee (2012) Virus-based piezoelectric energy generation. Nat. Nanotechnol. 7: 351–356.CrossRefGoogle Scholar
  8. 8.
    Lee, Y., H. Yi, W. Kim, K. Kang, D. Yun, M. Strano, G. Ceder, and A. Belcher (2009) Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Sci. 324: 1051–1055.Google Scholar
  9. 9.
    Grieco, S. H., S. Lee, W. S. Dunbar, R. T. MacGillivray, and S. B. Curtis (2009) Maximizing filamentous phage yield during computer-controlled fermentation. Bioproc. Biosyst. Eng. 32: 773–779.CrossRefGoogle Scholar
  10. 10.
    Branston, S., E. Stanley, E. Keshavarz Moore, and J. Ward (2012) Precipitation of filamentous bacteriophages for their selective recovery in primary purification. Biotechnol. Prog. 28: 129–136.CrossRefGoogle Scholar
  11. 11.
    Ling, T., C. Loong, W. Tan, B. Tey, W. Abdullah, and A. Ariff (2004) Purification of filamentous bacteriophage M13 by expanded bed anion exchange chromatography. J. Microbiol. 42: 228–232.Google Scholar
  12. 12.
    Branston, S., E. Stanley, J. Ward, and E. Keshavarz Moore (2011) Study of robustness of filamentous bacteriophages for industrial applications. Biotechnol. Bioeng. 108: 1468–1472.CrossRefGoogle Scholar
  13. 13.
    Brussow, H., M. Fremont, A. Bruttin, J. Sidoti, A. Constable, and V. Fryder (1994) Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Appl. Environ. Microbiol. 60: 4537–4543.Google Scholar
  14. 14.
    Moineau, S. (1999) Applications of phage resistance in lactic acid bacteria. Antonie Leeuwenhoek. 76: 377–382.CrossRefGoogle Scholar
  15. 15.
    Jones, D., M. Shirley, X. Wu, and S. Keis (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J. Mol. Microbiol. Biotechnol. 2: 21–26.Google Scholar
  16. 16.
    Jepson, C. and J. March (2004) Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine. 22: 2413–2419.CrossRefGoogle Scholar
  17. 17.
    Rahn, O. (1945) Physical methods of sterilization of microorganisms. Microbiol. Mol. Biol. Rev. 9: 1–47.Google Scholar
  18. 18.
    Pollard, E. and W. Solosko (1971) The thermal inactivation of T4 and bacteriophage lambda. Biophys. J. 11: 66–74.CrossRefGoogle Scholar
  19. 19.
    Miles, A. A. and S. S. Misra (1938) The estimation of the bactericidal power of the blood. J. Hyg. (Lond). 38: 732–749.CrossRefGoogle Scholar
  20. 20.
    Barrow, P., M. Lovell, and A. Berchieri (1998) Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Vacc. Immunol. 5: 294–298.Google Scholar
  21. 21.
    Halfhide, D., B. Gannon, C. Hayes, and J. Roe (2008) Wide variation in effectiveness of laboratory disinfectants against bacteriophages. Lett. Appl. Microbiol. 47: 608–612.CrossRefGoogle Scholar
  22. 22.
    Songer, J. (1967) Influence of relative humidity on the survival of some airborne viruses. Appl. Environ. Microbiol. 15: 35–42.Google Scholar
  23. 23.
    Abad, F., R. Pinto, and A. Bosch (1994) Survival of enteric viruses on environmental fomites. Appl. Environ. Microbiol. 60: 3704–3710.Google Scholar
  24. 24.
    Prouty, C. (1953) Storage of the bacteriophage of the lactic acid streptococci in the desiccated state with observations on longevity. Appl. Environ. Microbiol. 1: 250–251.Google Scholar
  25. 25.
    Iriarte, F., B. Balogh, M. Momol, L. Smith, M. Wilson, and J. Jones (2007) Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol. 73: 1704–1711.CrossRefGoogle Scholar
  26. 26.
    Kurosaki, Y., H. Abe, H. Morioka, J. Hirayama, K. Ikebuchi, N. Kamo, O. Nikaido, H. Azuma, and H. Ikeda (2003) Pyrimidine dimer formation and oxidative damage in M13 bacteriophage inactivation by ultraviolet C irradiation. Photochem. Photobiol. 78: 349–354.CrossRefGoogle Scholar
  27. 27.
    Lievense, L. and K. van’t Riet (1993) Convective drying of bacteria. I: The drying processes. Adv. Biochem. Eng. Biotechnol. 50: 45–63.Google Scholar
  28. 28.
    Small, P., D. Blankenhorn, D. Welty, E. Zinser, and J. Slonczewski (1994) Acid and base resistance in Escherichia coli and Shigella flexneri: Role of rpoS and growth pH. J. Bacteriol. 176: 1729–1737.Google Scholar
  29. 29.
    Lin, J., I. Lee, J. Frey, J. Slonczewski, and J. Foster (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 177: 4097–4104.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Steven D. Branston
    • 1
  • Emma C. Stanley
    • 2
  • John M. Ward
    • 1
  • Eli Keshavarz-Moore
    • 1
  1. 1.The Advanced Centre for Biochemical Engineering, Department of Biochemical EngineeringUniversity College LondonLondonUK
  2. 2.Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK

Personalised recommendations