Biotechnology and Bioprocess Engineering

, Volume 18, Issue 3, pp 472–478 | Cite as

A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates

  • R. Zuriani
  • S. Vigneswari
  • M. N. M. Azizan
  • M. I. A. Majid
  • A. A. Amirul
Research Paper


A rapid quantitative measurement of accumulated polyhydroxyalkanoate (PHA) is essential for rapid monitoring of PHA production by microorganisms. In the present study, a 96-well microplate was used as a high throughput means to measure the fluorescence intensity of the Nile red stained cells containing PHA. The linear correlation obtained between intracellular PHA concentration and the fluorescence intensity represents the potential of the Nile red method employment to determine PHA concentration. The optimal ranges of excitation and emission wavelengths were determined using bacterial cells containing different types of PHAs, of different co-monomers and compositions. Interestingly, in spite of different co-monomers compositions in each PHA, all tested PHAs fluoresced maximally at excitation wavelength between 520 and 550 nm, and emission wavelength between 590 and 630 nm. The developed staining method also had successfully demonstrated a good correlation between the amount of accumulated PHA based on the fluorescence intensity measurements and that from chromatographic analysis to evaluate poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)], using the same calibration curve, despite of different co-monomers that the PHA consist. Strongly supported by these experimental results, it can therefore be concluded that the developed staining method can be efficiently applied for rapid monitoring of PHA production.


polyhydroxyalkanoate nile red staining excitation and emission wavelength fluorescence intensity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doi, Y. (1990) Microbial polyesters. Wiley-VCH, NY, USA.Google Scholar
  2. 2.
    Chai, H. L., A. Rahayu, A. R. M. Yahya, M. I. A. Majid, and A. A. Amirul (2009) Microbial synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA2-4 through a two step cultivation process. Afr. J. Biotechnol. 8: 4189–4196.Google Scholar
  3. 3.
    Vigneswari, S., L. A. Nik, M. I. A. Majid, and A. A. Amirul (2010) Improved production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer using a combination of 1,4-butanediol and γ-butyrolactone. World J. Microbiol. Biotechnol. 26: 743–746.CrossRefGoogle Scholar
  4. 4.
    Thomson, N., I. Roy, D. Summers, and E. Sivaniah (2009) In vitro production of polyhydroxyalkanoates: Achievements and applications. J. Chem. Biotechnol. 85: 760–767.CrossRefGoogle Scholar
  5. 5.
    Arcos-Hernandez, M. V., N. Gurieff, S. Pratt, P. Magnusson, A. Werker, A. Vargas, and P. Lant (2010) Rapid quantification of intracellular PHA using infrared spectroscopy: An application in mixed cultures. J. Biotechnol. 150: 372–379.CrossRefGoogle Scholar
  6. 6.
    Guillermo, R. C., K. L. Bridget, P. Bruce, and L. K. David (2005) Emulsan quantitation by Nile red quenching fluorescence assay. Appl. Microbiol. Biotechnol. 67: 767–770.CrossRefGoogle Scholar
  7. 7.
    Gorenflo, V., A. Steinbuchel, S. Marose, M. Rieseberg, and T. Scheper (1999) Quantification of bacterial polyhydroxyalkanoic acids by Nile red staining. Appl. Microbiol. Biotechnol. 51: 765–772.CrossRefGoogle Scholar
  8. 8.
    Spiekerman, P., B. H. A. Rehm, R. Kalscheuer, D. Baumeister, and A. Steinbuchel (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 171: 73–80.CrossRefGoogle Scholar
  9. 9.
    Amirul, A. A., A. R. M. Yahya, K. Sudesh, M. N. M. Azizan, and M. I. A. Majid (2008) Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresour. Technol. 99: 4903–4909.CrossRefGoogle Scholar
  10. 10.
    Chen, W., C. Zhang, L. Song, M. Sommerfeld, and Q. Hu (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods 77: 41–47.CrossRefGoogle Scholar
  11. 11.
    Huang, G. H., C. Gu, and C. Feng (2009) Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenergy 33: 1386–1392.CrossRefGoogle Scholar
  12. 12.
    Greenspan, P. and S. D. Fowler (1985) Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 26: 781–789.Google Scholar
  13. 13.
    Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) A rapid gas chromatography method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29–37.CrossRefGoogle Scholar
  14. 14.
    Wu, H. A., D. S. Sheu, and C. Y. Lee (2003) Rapid differentiation between short-chain-length and medium-chain-length polyhydroxyalkanoate-accumulating bacteria with spectrofluorometry. J. Microbiol. Methods. 53: 131–135.CrossRefGoogle Scholar
  15. 15.
    William, J. P. and J. T. Christopher (1996) Quantitation of Poly-â-hydroxybutyrate by fluorescence of bacteria and granules stained with Nile blue A. Biotechnol. Techniques. 10: 215–220.Google Scholar
  16. 16.
    Tyo, K. E., H. Zhou, and G. N. Stephanopoulos (2006) Highhroughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. Strain PCC6803. Appl. Environ. Microbiol. 72: 3412–3417.CrossRefGoogle Scholar
  17. 17.
    James Kacmar, R. Carlson, S. J. Balogh, and F. Srienc (2005) Staining and quantification of poly-3-hydroxybutyrate in Saccharomyces cerevisiae and Cupriavidus necator cell populations using automated flow cytometry. Internat. Soc. Anal. Cytol. 69: 27–35.Google Scholar
  18. 18.
    Vidal-Mas, J., O. Resina-Pelfort, E. Haba, J. Comas, A. Manresa, and J. Vives-Rego (2001) Rapid flow cytometry — Nile red assessment of PHA cellular content and heterogeneity in cultures of Pseudomonas aeroginosa 47T2 (NCIB 40044) grown in waste frying oil. Kluwer Acad. Pub. 80: 57–63.Google Scholar
  19. 19.
    Chee, J. -Y., N. -S. Lau, M. -R. Samian, T. Tsuge, and K. Sudesh (2011) Expression of Aeromonas caviae polyhydroxyalkanoate synthase gene in Burkholderia sp. USM (JCM15050) enables the biosynthesis of SCL-MCL PHA from plam oil products. J. Appl. Microbiol. 112: 45–54.CrossRefGoogle Scholar
  20. 20.
    Tian, J., A. J. Sinskey, and J. Stubbe (2005) Kinetic studies of polyhydroxyalkanoate granule formation in Wautersia eutropha H16 by transmission electron microscopy. J. Bacteriol. 187: 3814–3824.CrossRefGoogle Scholar
  21. 21.
    Gerngross, T. U., P. Reilly, J. Stubbe, A. J. Sinskey, and O. P. Peoples (1993) Immunocytochemical analysis of poly-β-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: Localization of the synthase enzyme at the surface of PHB granules. J. Bacteriol. 175: 5289–5293.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Zuriani
    • 1
  • S. Vigneswari
    • 1
  • M. N. M. Azizan
    • 3
  • M. I. A. Majid
    • 1
  • A. A. Amirul
    • 1
    • 2
  1. 1.Malaysian Institute of Pharmaceuticals & Nutraceuticals, MOSTIPenangMalaysia
  2. 2.School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
  3. 3.Universiti Kuala LumpurKuala LumpurMalaysia

Personalised recommendations