Skip to main content
Log in

In silico study on the effect of surface lysines and arginines on the electrostatic interactions and protein stability

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Charged amino acids are mostly exposed on a protein surface, thereby forming a network of interactions with the surrounding amino acids as well as with water. In particular, positively charged arginine and lysine have different side chain geometries and provide a different number of potential electrostatic interactions. This study reports a comparative analysis of the difference in the number of two representative electrostatic interactions, such as salt-bridges and hydrogen bonds, contributed by surface arginine and lysine, as well as their effect on protein stability using molecular modeling and dynamics simulation techniques. Two in silico variants, the R variant with all arginines and the K variant with all lysines on the protein surface, were modeled by mutating all the surface lysines to arginines and the surface arginines to lysines, respectively, for each of the 10 model proteins. A structural comparison of the respective two variants showed that the majority of R variants possessed more salt-bridges and hydrogen bond interactions than the K variants, indicating that arginine provides a higher probability of electrostatic interactions than lysine owing to its side chain geometry. Molecular dynamics simulations of these variants revealed the R variants to be more stable than the K variants at room temperature but this effect was not prominent under protein denaturating conditions, such as 353 and 333 K with 8 M urea. These results suggest that the arginine residues on a protein surface contribute to the protein stability slightly more than lysine by enhancing the electrostatic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Strickler, S. S., A. V. Gribenko, A. V. Gribenko, T. R. Keiffer, J. Tomlinson, T. Reihle, V. V. Loladze, and G. I. Makhatadze (2006) Protein stability and surface electrostatics: A charged relationship. Biochem. 45: 2761–2766.

    Article  CAS  Google Scholar 

  2. Baldwin, R. L. (2007) Energetics of protein folding. J. Mol. Biol. 371: 283–301.

    Article  CAS  Google Scholar 

  3. Halskau, O., R. Perez-Jimenez, B. Ibarra-Molero, J. Underhaug, V. Munoz, A. Martinez, and J. M. Sanchez-Ruiz (2008) Large scale modulation of thermodynamic protein folding barriers linked to electrostatics. Proc. Natl. Acad. Sci. U. S. A. 105: 8625–8630.

    Article  CAS  Google Scholar 

  4. Park, H., J. Joo, K. Park, and Y. Yoo (2012) Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol. Bioproc. Eng. 17: 722–728.

    Article  CAS  Google Scholar 

  5. Tissot, A. C., S. Vuilleumier, and A. R. Fersht (1996) Importance of two buried salt bridges in the stability and folding pathway of barnase. Biochem. 35: 6786–6794.

    Article  CAS  Google Scholar 

  6. Pervushin, K., M. Billeter, G. Siegal, and K. Wüthrich (1996) Structural role of a buried salt bridge in the 434 repressor DNA-binding domain. J. Mol. Biol. 264: 1002–1012.

    Article  CAS  Google Scholar 

  7. Akke, M. and S. Forsén (1990) Protein stability and electrostatic interactions between solvent exposed charged side chains. Proteins: Struct. Funct. Bioinform. 8: 23–29.

    Article  CAS  Google Scholar 

  8. Permyakov, S. E., G. I. Makhatadze, R. Owenius, V. N. Uversky, C. L. Brooks, E. A. Permyakov, and L. J. Berliner (2005) How to improve nature: Study of the electrostatic properties of the surface of -lactalbumin. Protein Eng. Des. Sel. 18: 425–433.

    Article  CAS  Google Scholar 

  9. Makhatadze, G. I., V. V. Loladze, A. V. Gribenko, and M. M. Lopez (2004) Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions. J. Mol. Biol. 336: 929–942.

    Article  CAS  Google Scholar 

  10. Flores, K., J. Salgado, G. Zapata-Torres, Z. Gerdtzen, M. -J. Gonzalez, and M. Hermoso (2012) Effect of the electrostatic potential on the internalization mechanism of cell penetrating peptides derived from TIRAP. Biotechnol. Bioproc. Eng. 17: 485–499.

    Article  CAS  Google Scholar 

  11. Kumar, S., C. -J. Tsai, and R. Nussinov (2000) Factors enhancing protein thermostability. Protein Eng. 13: 179–191.

    Article  CAS  Google Scholar 

  12. Yokota, K., K. Satou, and S. -Y. Ohki (2006) Comparative analysis of protein thermostability: Differences in amino acid content and substitution at the surfaces and in the core regions of thermophilic and mesophilic proteins. Sci. Tech. Adv. Mater. 7: 255–262.

    Article  CAS  Google Scholar 

  13. Borders, C. L., J. A. Broadwater, P. A. Bekeny, J. E. Salmon, A. S. Lee, A. M. Eldridge, and V. B. Pett (1994) A structural role for arginine in proteins: Multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci. 3: 541–548.

    Article  CAS  Google Scholar 

  14. Donald, J. E., D. W. Kulp, and W. F. DeGrado (2011) Salt bridges: Geometrically specific, designable interactions. Proteins: Struct. Funct. Bioinform. 79: 898–915.

    Article  CAS  Google Scholar 

  15. Sokalingam, S., G. Raghunathan, N. Soundrarajan, and S. -G. Lee (2012) A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PLoS One. 7: 40410.

    Article  Google Scholar 

  16. Strub, C., C. Alies, A. Lougarre, C. Ladurantie, J. Czaplicki, and D. Fournier (2004) Mutation of exposed hydrophobic amino acids to arginine to increase protein stability. BMC Biochem. 5: 9.

    Article  Google Scholar 

  17. Zhou, X. X., Y. B. Wang, Y. J. Pan, and W. F. Li (2007) Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids. 34: 25–33.

    Article  Google Scholar 

  18. Marti-Renom, M. A., A. C. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29: 291–325.

    Article  CAS  Google Scholar 

  19. Hess, B., C. Kutzner, D. van der Spoel, and E. Lindahl (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4: 435–447.

    Article  CAS  Google Scholar 

  20. Schuttelkopf, A. W. and D. M. F. van Aalten (2004) PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. Sect. D. Biol. Crystallogr. 60: 1355–1363.

    Article  Google Scholar 

  21. Murzin, A. G., S. E. Brenner, T. Hubbard, and C. Chothia (1995) SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247: 536–540.

    CAS  Google Scholar 

  22. Bernstein, F. C., T. F. Koetzle, G. J. B. Williams, E. F. Meyer Jr, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi (1978) The protein data bank: A computer-based archival file for macromolecular structures. Arch. Biochem. Biophys. 185: 584–591.

    Article  CAS  Google Scholar 

  23. Rose, G. D., P. J. Fleming, J. R. Banavar, and A. Maritan (2006) A backbone-based theory of protein folding. Proc. Natl. Acad. Sci. U. S. A. 103: 16623–16633.

    Article  CAS  Google Scholar 

  24. Daggett, V. and A. Fersht (2003) The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 4: 497–502.

    Article  CAS  Google Scholar 

  25. Fromm, J. R., R. E. Hileman, E. E. O. Caldwell, J. M. Weiler, and R. J. Linhardt (1995) Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch. Biochem. Biophys. 323: 279–287.

    Article  CAS  Google Scholar 

  26. Matsutani, M., H. Hirakawa, M. Nishikura, W. Soemphol, I. A. I. Ali, T. Yakushi, and K. Matsushita (2011) Increased number of arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100. Biochem. Biophys. Res. Commun. 409: 120–124.

    Article  CAS  Google Scholar 

  27. Kagawa, M., Z. Fujimoto, M. Momma, K. Takase, and H. Mizuno (2003) Crystal structure of Bacillus subtilis alpha-amylase in complex with acarbose. J. Bacteriol. 185: 6981–6984.

    Article  CAS  Google Scholar 

  28. Lee, J. and M. Paetzel (2011) Structure of the catalytic domain of glucoamylase from Aspergillus niger. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67: 188–192.

    Article  Google Scholar 

  29. Kohno, M., J. Funatsu, B. Mikami, W. Kugimiya, T. Matsuo, and Y. Morita (1996) The crystal structure of lipase II from Rhizopus niveus at 2.2 A resolution. J. Biochem. 120: 505–510.

    Article  CAS  Google Scholar 

  30. Santos, C. R., J. H. Paiva, M. L. Sforca, J. L. Neves, R. Z. Navarro, J. Cota, P. K. Akao, Z. B. Hoffmam, A. N. Meza, J. H. Smetana, M. L. Nogueira, I. Polikarpov, J. Xavier-Neto, F. M. Squina, R. J. Ward, R. Ruller, A. C. Zeri, and M. T. Murakami (2012) Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem. J. 441: 95–104.

    Article  CAS  Google Scholar 

  31. van Pouderoyen, G., H. J. Snijder, J. A. Benen, and B. W. Dijkstra (2003) Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Lett. 554: 462–466.

    Article  Google Scholar 

  32. Almog, O., A. Gonzalez, N. Godin, M. de Leeuw, M. J. Mekel, D. Klein, S. Braun, G. Shoham, and R. L. Walter (2009) The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins. 74: 489–496.

    Article  CAS  Google Scholar 

  33. Wouters, J., J. Georis, D. Engher, J. Vandenhaute, J. Dusart, J. M. Frere, E. Depiereux, and P. Charlier (2001) Crystallographic analysis of family 11 endo-beta-1,4-xylanase Xyl1 from Streptomyces sp. S38. Acta Crystallogr. Sect. D. Biol. Crystallogr. 57: 1813–1819.

    Article  CAS  Google Scholar 

  34. Schultz, L. W., L. Liu, M. Cegielski, and J. W. Hastings (2005) Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Proc. Natl. Acad. Sci. U. S. A. 102: 1378–1383.

    Article  CAS  Google Scholar 

  35. Guillet, V., A. Lapthorn, R. W. Hartley, and Y. Mauguen (1993) Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure. 1: 165–176.

    Article  CAS  Google Scholar 

  36. Summerfield, R. L., D. M. Daigle, S. Mayer, D. Mallik, D. W. Hughes, S. G. Jackson, M. Sulek, M. G. Organ, E. D. Brown, and M. S. Junop (2006) A 2.13 A structure of E. coli dihydrofolate reductase bound to a novel competitive inhibitor reveals a new binding surface involving the M20 loop region. J. Med. Chem. 49: 6977–6986.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Gu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokalingam, S., Madan, B., Raghunathan, G. et al. In silico study on the effect of surface lysines and arginines on the electrostatic interactions and protein stability. Biotechnol Bioproc E 18, 18–26 (2013). https://doi.org/10.1007/s12257-012-0516-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0516-1

Keywords

Navigation