Advertisement

Biotechnology and Bioprocess Engineering

, Volume 18, Issue 1, pp 8–17 | Cite as

Proteomics approach to decipher novel genes and enzymes characterization of a bioelectricity-generating and dye-decolorizing bacterium Proteus hauseri ZMd44

  • I. -Son Ng
  • Xuesong Zheng
  • Bor-Yann Chen
  • Xiaoqin Chi
  • Yinghua Lu
  • Chun-Sheng Chang
Research Paper

Abstract

The first-attempt study employed a proteomics strategy for the identification of abundant proteins from a bioelectricity generation and dye decolorization bacterium Proteus hauseri ZMd44. By using the degenerated primers designed based on the peptide sequences from tandem mass spectroscopy and the whole genomics annotation of the closely associated strain, Proteus penneri ATCC 35198, the genes were successfully obtained for two full-length genes of 543 bp (laccase) and 1,086 bp (Omp F, porin) encoding to 181 amino acids and 362 amino acids, respectively. It explored laccase and NADH dehydrogenase involvement in the oxidation-reduction reaction as well, as porin played an important role in providing channels for related proteins in the accomplishment of electron transportation in P. hauseri. Detailed enzymatic assays indicated that laccase activity of 542.2 U/DCW could be stimulated by 2.5 mM copper induction in LB medium (ca. 293-fold to those without copper induction). Among intracellular proteins, NADH dehydrogenase activity of 257.2 U/mg via mediator riboflavin was in parallel with the decolorizing capability of azo dye Rb160 that only took place in LB medium. From the evaluation of kinetic parameters (Vmax and Km were 0.272 U/min and 0.393 mM with ABTS, 0.046 U/min and 43.8 μM with NADH), it is better to decipher the decolorization mechanism of ZMd44 indicating that laccase and NADH dehydrogenase played the most crucial role for azo dye decolorization.

Keywords

Proteus hauseri proteomics laccase porin NADH dehydrogenase azo dye decolorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao, B., M. Wang, L. Liu, Z. Zhou, S. Wen, A. Rozalski, and L. Wang (2009) 16S-23S rDNA internal transcribed spacer regions in four Proteus species. J. Microbiol. Methods 77: 109–118.CrossRefGoogle Scholar
  2. 2.
    O’Hara, C. M., F. W. Brenner, A. G. Steigerwalt, B. C. Hill, B. Holmes, P. A. Grimont, P. M. Hawkey, J. L. Penner, J. M. Miller, and D. J. Brenner (2000) Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov., nom. rev. and unnamed Proteus genomospecies 4, 5 and 6. Int. J. Syst. Evol. Microbiol. 50: 1869–1875.Google Scholar
  3. 3.
    Chen, B. Y., M. M. Zhang, C. T. Chang, Y. Ding, K. L. Lin, C. S. Chiou, C. C. Hsueh, and H. Xu (2010) Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresour. Technol. 101: 4737–4741.CrossRefGoogle Scholar
  4. 4.
    Zhang, M. M., W. M. Chen, B. Y. Chen, C. T. Chang, C. C. Hsueh, Y. Ding, K. J. Lin, and H. Xu (2010) Comparative study on characteristics of azo dye decolorization by indigenous decolorizers. Bioresour. Technol. 101: 2651–2656.CrossRefGoogle Scholar
  5. 5.
    Chen, B. Y., Y. M. Wang, and I. S. Ng (2011) Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri. Bioresour. Technol. 102: 1159–1165.CrossRefGoogle Scholar
  6. 6.
    Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21: 999–1015.CrossRefGoogle Scholar
  7. 7.
    Logan, B. E. (2008) Microbial Fuel Cells, Wiley Bicenetennial-Knowledge for Generations (1807–2007).Google Scholar
  8. 8.
    Chen, B. Y., Y. M. Wang, I. S. Ng, S. Q. Liu, and J. Y. Hung (2011) Deciphering simultaneous bioelectricity generation and dye decolorization using Proteus hauseri. J. Biosci. Bioeng. 113: 502–507.CrossRefGoogle Scholar
  9. 9.
    Patterson, S. D. and R. H. Aebersold (2003) Proteomics: The first decade and beyond. Nat. Genet. 33: 311–323.CrossRefGoogle Scholar
  10. 10.
    Bumpus, S. B., B. S. Evans, P. M. Thomas, I. Ntai, and N. L. Kelleher (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat. Biotechnol. 27: 951–956.CrossRefGoogle Scholar
  11. 11.
    Choi, J., W. A. Joo, S. J. Park, S. H. Lee, and C. W. Kim (2005) An efficient proteomics based strategy for the functional characterization of a novel halophilic enzyme from Halobacterium salinarum. Proteomics 5: 907–917.CrossRefGoogle Scholar
  12. 12.
    Dawkar, V. V., U. U. Jadhav, G. S. Ghodake, and S. P. Govindwar (2009) Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation 20: 777–787.CrossRefGoogle Scholar
  13. 13.
    Telke, A. A., G. S. Ghodake, D. C. Kalyani, R. S. Dhanve, and S. P. Govindwar (2011) Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR. Bioresour. Technol. 102: 1752–1756.CrossRefGoogle Scholar
  14. 14.
    Pricelius, S., C. Held, M. Murkovic, M. Bozic, V. Kokol, A. Cavaco-Paulo, and G. M. Guebitz (2007) Enzymatic reduction of azo and indigoid compounds. Appl. Microbiol. Biotechnol. 77: 321–327.CrossRefGoogle Scholar
  15. 15.
    Zimmermann, T., H. G. Kulla, and T. Leisinger (1982) Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur. J. Biochem. 129: 197–203.CrossRefGoogle Scholar
  16. 16.
    Wariishi, H., M. Kabuto, J. Mikuni, M. Oyadomari, and H. Tanaka (2002) Degradation of water-insoluble dyes by microperoxidase-11, an effective and stable peroxidative catalyst in hydrophilic organic media. Biotechnol. Prog. 18: 36–42.CrossRefGoogle Scholar
  17. 17.
    Matis, M., M. Zakelj-Mavric, and J. Peter-Katalinic (2005) Mass spectrometry and database search in the analysis of proteins from the fungus Pleurotus ostreatus. Proteomics 5: 67–75.CrossRefGoogle Scholar
  18. 18.
    Wilm, M., A. Shevchenko, T. Houthaeve, S. Breit, L. Schweigerer, T. Fotsis, and M. Mann (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379: 466–469.CrossRefGoogle Scholar
  19. 19.
    Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783–795.CrossRefGoogle Scholar
  20. 20.
    Jyothisri, K., V. Deepak, and M. R. Rajeswari (1999) Purification and characterization of a major 40 kDa outer membrane protein of Acinetobacter baumannii. FEBS Lett. 443: 57–60.CrossRefGoogle Scholar
  21. 21.
    Guzev, K. V., M. P. Isaeva, O. D. Novikova, T. F. Solov’eva, and V. A. Rasskazov (2005) Molecular characteristics of OmpF-like porins from pathogenic Yersinia. Biochem. 70: 1104–1110.Google Scholar
  22. 22.
    Wang, B., M. Xu, and G. Sun (2011) Comparative analysis of membranous proteomics of Shewanella decolorationis S12 grown with azo compound or Fe (III) citrate as sole terminal electron acceptor. Appl. Microbiol. Biotechnol. 86: 1513–1523.CrossRefGoogle Scholar
  23. 23.
    Sirim, D., F. Wagner, L. Wang, R. D. Schmid, and J. Pleiss (2011) The Laccase Engineering Database: A classification and analysis system for laccases and related multicopper oxidases. Database (Oxford), bar006.Google Scholar
  24. 24.
    Linke, D., H. Bouws, T. Peters, M. Nimtz, R. G. Berger, and H. Zorn (2005) Laccases of Pleurotus sapidus: Characterization and cloning. J. Agric. Food. Chem. 53: 9498–9505.CrossRefGoogle Scholar
  25. 25.
    Neifar, M., A. Jaouani, R. Ellouze-Ghorbel, S. Ellouze-Chaabouni, and M. J. Penninckx (2009) Effect of culturing processes and copper addition on laccase production by the white-rot fungus Fomes fomentarius MUCL 35117. Lett. Appl. Microbiol. 49: 73–78.CrossRefGoogle Scholar
  26. 26.
    Telke, A.A., A. A. Kadam, S. S. Japtap, J. P. Jadhav, and S. P. Govindwar (2010) Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146. Biotechnol. Bioproc. Eng. 15: 696–703.CrossRefGoogle Scholar
  27. 27.
    Zhu, Y., H. Zhang, M. Cao, Z. Wei, F. Hung, and P. Gao (2011) Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization. Biotechnol. Bioproc. Eng. 16: 1027–1035.CrossRefGoogle Scholar
  28. 28.
    Wu, J., K. S. Kim, J. H. Lee, and Y. C. Lee (2010) Cloning, expression in Escherichia coli, and enzymatic properties of laccase from Aeromonas hydrophila WL-11. J. Environ. Sci. 22: 635–640.CrossRefGoogle Scholar
  29. 29.
    Hickman, F. W., A. G. Steigerwalt, J. J. Farmer, and D. J. Brenner (1982) Identification of Proteus penneri sp. nov., formerly known as Proteus vulgaris indole negative or as Proteus vulgaris biogroup 1. J. Clin. Microbiol. 15: 1097–1102.Google Scholar
  30. 30.
    Olukanni, O. D., A. A. Osuntoki, D. C. Kalyani, G. O. Gbenle, and S. P. Govindwar (2010) Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J. Hazard. Mater. 184: 290–298.CrossRefGoogle Scholar
  31. 31.
    Rodriguez Couto, S. and J. L. Toca Herrera (2006) Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 24: 500–513.CrossRefGoogle Scholar
  32. 32.
    Forgacs, E., T. Cserhati, and G. Oros (2004) Removal of synthetic dyes from wastewaters: A review. Environ. Int. 30: 953–971.CrossRefGoogle Scholar
  33. 33.
    Chen, B. Y., M. Y. Wang, W. B. Lu, and J. S. Chang (2007) Use of active consortia of constructed ternary bacterial cultures via mixture design for azo-dye decolorization enhancement. J. Hazard. Mater. 145: 404–409.CrossRefGoogle Scholar
  34. 34.
    Saratale, R. G., G. D. Saratale, D. C. Kalyani, J. S. Chang, and S. P. Govindwar (2009) Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour. Technol. 100: 2493–2500.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • I. -Son Ng
    • 1
    • 2
  • Xuesong Zheng
    • 1
  • Bor-Yann Chen
    • 3
  • Xiaoqin Chi
    • 1
  • Yinghua Lu
    • 1
    • 2
  • Chun-Sheng Chang
    • 4
  1. 1.Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.The Key Laboratory for Synthetic Biotechnology of Xiamen CityXiamen UniversityXiamenChina
  3. 3.Department of Chemical and Materials EngineeringNational I-Lan UniversityI-LanTaiwan
  4. 4.Department of BiotechnologySouthern Taiwan University of Science TechnologyTainan CountyTaiwan

Personalised recommendations