Biotechnology and Bioprocess Engineering

, Volume 17, Issue 5, pp 1031–1040 | Cite as

Isolation and antioxidant activity evaluation of two new phthalate derivatives from seahorse, Hippocampus Kuda Bleeler

Research Paper

Abstract

Seahorse (Hippocampus Kuda Bleeler) has been used as traditional medicine for thousands of years, in Eastern Asia. In this study of the methanol extract of fresh Hippocampus Kuda, the new compounds 2-ethyldecyl 2-ethylundecyl phthalate (1), 2, 12-diethyl-11-methylhexadecyl 2-ethyl-11-methylhexadecylphthalate (2), along with a known Bis(2-ethylheptyl) phthalate (3) were isolated. They were tested for their antioxidant activities, including lipid peroxidation inhibitory activity, DPPH radical scavenging, hydroxyl radical scavenging, superoxide anion radical scavenging, alkyl radical scavenging, and cellular radicals; these can be detected using a fluorescence probe, 2′,7′-dichlorofluorescin diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on mouse macrophages, RAW264.7 cell. Compound (2) exhibited the highest antioxidant activity and inhibitory intracellular ROS than another compounds (1, 3). Furthermore, MTT assay showed no cytotoxicity on mouse macrophages cell (RAW264.7) and human fetal lung fibroblast cell line (MRC-5). This antioxidant property depends on concentration and increasing with increased amount of the compound.

Keywords

hippocampus kuda bleeler phthalate antioxidant activity free radical scavenging reactive oxygen species (ROS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, H., Y. Luo, and S. D. Luo (2001) Affect of the sea horse Hippocampus japonicus on pituitarygonadal axis in male rats. Mar. Drugs Chin. 2: 39–41.Google Scholar
  2. 2.
    Hu, J. Y., B. F. Li, Z. J. Li, and P. Lv (2000) An experimental study on anti-fatigue effects of eight marine pharmakons. Mar. Drugs Chin. 2: 56–58.Google Scholar
  3. 3.
    Fu, Z. Y., Y. Lu, J. H. Lin, Z. Z. Sun, J. Su, M. L. Dong, and A. L. Xu (2003) Molecular profile of the unique species of traditional Chinese medicine, Chinese seahorse (Hippocampus kuda Bleeker). FEBS Lett. 550: 124–134.CrossRefGoogle Scholar
  4. 4.
    Chen, J. H, H. Q. Zhao, S. Qian, D. L. Zhang, H. Y. Cheng, X. R. Wang, and F. S. C. Lee (2010) Rapid screening and identification of the antioxidants in Hippocampus japonicas Kaup by HPLCESI-TOF/MS and on-line ABTS free radical scavenging assay. J. Sep. Sci. 33: 672–677.CrossRefGoogle Scholar
  5. 5.
    Hanène, M., E. Ameur, K. M Larbi, A. Piras, S. Porcedda, D. Falconieri, B. Marongiu, F. Farhat, and R. Chemli (2012) Chemical composition of the essential oils of the berries of Juniperus oxycedrus L. ssp. rufescens (L. K.) and Juniperus oxycedrus L. ssp. macrocarpa (S. & m.) Ball. and their antioxidant activities. Nat. Prod. Res. 26: 810–820.CrossRefGoogle Scholar
  6. 6.
    Sun, Y. (1990) Free radicals, antioxidant enzymes and carcinogenesis. Free Radic. Biol. Med. 8: 583–599.CrossRefGoogle Scholar
  7. 7.
    Osawa, T. and M. Namiki (1985) Natural antioxidant isolated from eucalyptus leaf waxes. J. Agric. Food Chem. 33: 770–780.CrossRefGoogle Scholar
  8. 8.
    Nanjo, F., K. Goto, R. Seto, M. Suzuki, M. Sakai, and Y. Hara (1996) Scavenging effects of tea catechins and their dericatives on. 1.1-diphenyl-2-picrydrazyl radical. Free Radic. Biol. Med. 21: 895–902.CrossRefGoogle Scholar
  9. 9.
    Rosen, G. M. and E. J. Rauckman (1984) Spin trapping of superoxide and hydroxyl radicals. Methods Enzymol. 105: 198–209.CrossRefGoogle Scholar
  10. 10.
    Guo, Q., B. Zhao, S. Shen, J. Hou, J. Hu, J and W. Xin (1999) ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Acta Biochim. Biophys Sin. 1427: 13–23.CrossRefGoogle Scholar
  11. 11.
    Hiramoto, K., H. Johkoh, K. I. Sako, and K. Kikugawa (1993) DNA breaking activity of the carbon-centered radical generated from 2,2-azobis-(2-amidinopropane) hydrochloride(AAPH). Free Radic. Res. Commun. 19: 323–332.CrossRefGoogle Scholar
  12. 12.
    Hansen, M. B., S. E. Nielsen, and K. Berg (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods. 119: 203–210.CrossRefGoogle Scholar
  13. 13.
    Qian, Z. J., B. M. Ryu, M. M. Kim, and S. K. Kim (2008) Free radical and reactive oxygen species scavenging activities of the extracts from Seahorse, Hippocampus Kuda Bleeler. Biotechnol. Bioproc. Eng. 13: 705–715.CrossRefGoogle Scholar
  14. 14.
    Simone, W. G., J. M. A. Anderson, E. T. Chris, G. Konstanze, G. Andrea, S. K. Anja, and C. Ibrahim (2007) A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): Reproductive effects on adult female offspring rats. Toxicol. 229: 114–122.CrossRefGoogle Scholar
  15. 15.
    Lee, K. H., J. H. Kim, D. S. Lim, and C. H. Kim (200) Anti-leukemic and anti-mutagenic effects of di(2-ethylhexyl) phthalate isolated from Aloe vera Linne. J.Pharm. Pharmacol. 52: 593–598.Google Scholar
  16. 16.
    Sastry, V. M. V. S. and G. R. K. Rao (1995) Dioctyl phthalate, and antibacterial compound from the marine brown alga-Sargassum wightii. J. Appl. Phycol. 7: 185–186.CrossRefGoogle Scholar
  17. 17.
    EI-Naggar, M. Y. M. (1997) Dibutyl phathalate and the antitumor agent F5A1, two metabolites produced by Streptomyces nasri submutant h35. Biomed. Lett. 55: 125–134.Google Scholar
  18. 18.
    Marchetti, L., M. G. Sabbieti, M. Menghi, S. Materazzi, M. M. Hurley, and G. Manghi (2002) Effect of phthatate esters on actin cytoskeleton of py1a rat osteoblasts. Histo Histopathol: 17: 1061–1066.Google Scholar
  19. 19.
    Al-Bari, M. A., M. S. Bhuiyan, M. E. Flores, P. Petrosyan, M. Garcia-Varela, and M. A. Islam (2005) (2005) Streptomyces bangladeshensis sp. nov., isolated from soil, which produces bis-(2-ethylhexyl) phthalate. Int. J. Syst. Evol. Microbiol. 55: 1973–1977.CrossRefGoogle Scholar
  20. 20.
    Amade, P., M. Mallea, and N. Bouaicha (1994) Isolation, structural identification and biological activity of two metabolites produced by Penicillium olsonii Bainier and Sartory. J. Antibiot. 47: 201–207.CrossRefGoogle Scholar
  21. 21.
    Stefanov, K., M. Konaklieva, E. Y. Brechany, and W. W. Christie (1988) Fatty acid composition of some algae from the black sea. Phytochem. 27: 3495–3497.CrossRefGoogle Scholar
  22. 22.
    Noguchi, T., M. Ikawa, J. J. Uebel, and K. K. Andersen (1979) Lipid constituents of the red algae Ceramiumrubrum. A search for antimicrobial and chemical defense substances. pp. 711–718. In: Hoppe, H. A., T. Levring, and Y. Tanaka (eds.). Marine algae in pharmaceutical science. Walter de Gruyter and Co., NY, USA.Google Scholar
  23. 23.
    Farber, J., M. E. Kyle, and J. B. Coleman (1990) Biology of disease: Mechanisms of cell injury by activated oxygen species. Lab Invest. 62: 670–679.Google Scholar
  24. 24.
    Halliwell, B. and J. M. C. Gutteridge (1990) Role of free radicals and catalytic metal ions in human disease: An overview. pp. 1–85. In: Packer, L. and A. N. Glazed (eds.). Methods Enzymol. NY, USA.Google Scholar
  25. 25.
    Cross, C. E., B. H. Halliwell, E. T. Borish, W. A. Pryor, B. E. Ames, R. L. Sual, J. Mccord, and D. Harman (1987) Oxygen radicals and human disease. Ann. Intern. Med. 107: 526–545.Google Scholar
  26. 26.
    Bus, J. B. and J. E. Gibson (1979) Lipid peroxidation and its role in toxicology. In: Hodgson, E., J. Bend, and R. Philpot (eds.). Rev. Biochem. Toxicol. 1: 125–149.Google Scholar
  27. 27.
    Svingen, B. A., J. A. Buege, F. O. O’Nea, and S. D. Aust (1979) The mechanism of NADPH-dependent lipid peroxidation. The progagation of lipid peroxidation. J. Bio. Chem. 245: 5892–5899.Google Scholar
  28. 28.
    Halliwell, B. and J. M. C. Gutteridge (1990) The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280: 1–8.CrossRefGoogle Scholar
  29. 29.
    Toda, C., Y. Okamoto, K. Ueda, K. Hashizume, K. Itoh, and N. Kojima (2004) Unequivocal estrogen receptor-binding affinity of phthalate esters featured with ring hydroxylation and proper alkyl chain size. Arch. Biochem. Biophys. 431: 16–21.CrossRefGoogle Scholar
  30. 30.
    Fang, H., W. Tong, L. M. Shi, R. Blair, R. Perkins, W. BranhamW, B. S. Hass, Q. Xie, S. L. Dial, C. L. Moland, and D. M. Sheehan (2001) Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem. Res. Toxicol. 14: 280–294.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Marine Life Science and Marine Life Research and Education CenterChosun UniversityGwangjuKorea
  2. 2.Marine Bioprocess Research CenterPukyong National UniversityBusanKorea

Personalised recommendations