Biotechnology and Bioprocess Engineering

, Volume 17, Issue 5, pp 900–911 | Cite as

Current status and perspectives of biopharmaceutical drugs

  • Jae Kuk Ryu
  • Hyo Sun Kim
  • Doo Hyun Nam
Review Paper


Since the first approval of recombinant human insulin three decades ago, more than 150 biopharmaceutical drugs have been marketed, and some of them became blockbuster drugs in market size. The patent expiration of the oldest biopharmaceutical drugs resulted in the development of biosimilar drugs. However the short serum half-life of biopharmaceutical drugs incurs a frequent injection to maintain a target clinical outcome in patients. The other major critical concern of biopharmaceutical drugs is immunogenicity producing anti-drug antibodies. These antibodies may reduce clinical efficacy by neutralizing biological activity, and may not only cause a severe allergic reaction but also other serious adverse reactions by blocking endogenous proteins. In order to improve pharmaceutical properties and reduce immunogenicity, the next generation biobetter drugs were achieved by glycoengineering technology, pegylation technology and protein engineering technology. Other biobetter drugs having optimized binding sites were also generated by in vitro display technology. Many of those biobetter drugs have been developed and/or are under development, and come into the clinical field in the near future.


biopharmaceutical drug biosimilar biobetter glycoengineering pegylation protein engineering display technology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IMS Health Inc. (2009) “IMS Health Midas”.Google Scholar
  2. 2.
    Nam, D. H. and D. D. Y. Ryu (1999) Biomolecular engineering and drug development. Biotechnol. Bioproc. Eng. 4: 83–92.CrossRefGoogle Scholar
  3. 3.
    Ryu, D. D. Y. and D. H. Nam (2000) Recent progress in biomolecular engineering. Biotechnol. Progr. 16: 2–16.CrossRefGoogle Scholar
  4. 4.
    Moors, E. S. and H. Shellekens (2010) The strengths and weaknesses of the European biosimilar regulatory pathway. Nat. Biotechnol. 28: 28–32.CrossRefGoogle Scholar
  5. 5.
    Rathore, A. S. (2009) Follow-on protein products: Scientific issues, developments and challenges. Trends Biotechnol. 27: 698–705.CrossRefGoogle Scholar
  6. 6.
    Woodcock, J., J. Griffin, R. Behrman, B. Cherney, T. Crescenzi, B. Frase, D. Hixon, C. Joneckis, S. Kozlowski, A. Rosenberg, L. Schrager, E. Shacter, R. Temple, K. Webber, and H. Winkle (2007) The FDA’s assessment of follow-on protein products: A historical perspective. Nat. Rev. Drug Discov. 6: 437–442.CrossRefGoogle Scholar
  7. 7.
    Joung J., J. S. Robertson, E. Griffiths, I. Knezevic, and WHO Informal Consultation Group (2008). WHO informal consultation on regulatory evaluation of therapeutic biological medicinal products held at WHO Headquarters, Geneva, 19–20 April 2007. Biologic. 36: 269–276.CrossRefGoogle Scholar
  8. 8.
    Knezevic, I. and E. Griffiths (2011) Biosimilars — global issues, national solutions. Biologic. 39: 252–255.CrossRefGoogle Scholar
  9. 9.
    Kang, H. -N. (2011) Summary of the diverse situation of similar biotherapeutic products in the selected countries (August 2010). Biologic. 39: 304–307.CrossRefGoogle Scholar
  10. 10.
    Knezevic, I. (2011) Evaluation of similar biotherapeutic products (SBPs): Scientific principles and their implementation. Biologic. 39: 256–261.CrossRefGoogle Scholar
  11. 11.
    Wenzel, R. G. (2008) Biosimilars: Illustration of scientific issues in two examples. Am. J. Health Syst. Pharm. 65: 9–15.CrossRefGoogle Scholar
  12. 12.
    Salgado, E. and J. J. Gómez-Reino (2011) The risk of tuberculosis in patients treated with TNF antagonists. Expert Rev. Clin. Immunol. 7: 329–340.CrossRefGoogle Scholar
  13. 13.
    Tavazzi, E., P. Ferrante, and K. Khalili (2011) Progressive multifocal leukoencephalopathy: An unexpected complication of modern therapeutic monoclonal antibody therapies. Clin. Microbiol. Infect. 17: 1776–1780.CrossRefGoogle Scholar
  14. 14.
    Rosenberg, A. S. (2003) Immunogenicity of biological therapeutics: A hierarchy of concerns. Develop. Biol. (Basel) 112: 15–21.Google Scholar
  15. 15.
    Barbosa, M. D. F. S. (2011) Immunogenicity of biotherapeutics in the context of developing biosimilars and biobetters. Drug Discov. Today 16: 345–353.CrossRefGoogle Scholar
  16. 16.
    Tamilvanan, S., N. L. Raja, B. Sa, and S. K. Basu (2010) Clinical concerns of immunogenicity produced at cellular levels by biopharmaceuticals following their parenteral administration into human body. J. Drug Target. 18: 489–498.CrossRefGoogle Scholar
  17. 17.
    Massa, G., M. Vanderschueren-Lodeweyckx, and R. Bouillon (1993) Five-year follow-up of growth hormone antibodies in growth hormone deficient children treated with recombinant human growth hormone. Clin. Endocrinol. 38: 137–142.CrossRefGoogle Scholar
  18. 18.
    Schellenkens, H. and N. Casadevall (2004) Immunogenicity of recombinant human proteins: Causes and consequences. J. Neurol. 251: 4–9.Google Scholar
  19. 19.
    Frost, H. (2005) Antibody-mediated side effects of recombinant proteins. Toxicol. 209: 155–160.CrossRefGoogle Scholar
  20. 20.
    Berman, E., G. Heller, S. Kempin, T. Gee, L. L. Tran, and B. Clarkson (1990) Incidence of response and long-term follow-up in patients with hairy cell leukemia treated with recombinant interferon alfa-2a. Blood 75: 839–845.Google Scholar
  21. 21.
    Wussow, P. V., D. Jakschies, M. Freund, R. Hehlmann, F. Brockhaus, H. Hochkeppel, M. Horisberger, and H. Deicher (1991) Treatment of anti-recombinant interferon-α2 antibody positive CML patients with natural interferon-α. Brit. J. Haematol. 78: 210–216.CrossRefGoogle Scholar
  22. 22.
    van der Eijk, A. A., J. M. Vrolijk, and B. L. Haagmans (2006) Antibodies neutralizing peginterferon alfa during retreatment of hepatitis C. New Engl. J. Med. 354: 1323–1324.CrossRefGoogle Scholar
  23. 23.
    Casadevall, N., J. Nataf, B. Viron, A. Kolta, J. J. Kiladjian, P. Martin-Dupont, P. Michaud, T. Papo, V. Ugo, I. Teyssandier, B. Varet, and P. Mayeux (2002) Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. New Engl. J. Med. 346: 469–475.CrossRefGoogle Scholar
  24. 24.
    Locatelli, F., L. Del Vecchio, and P. Pozzoni (2007) Pure red-cell aplasia “epidemic”—mystery completely revealed? Periton. Dial. Int. 27: 303–307.Google Scholar
  25. 25.
    McKoy, J. M., R. E. Stonecash, D. Cournoyer, J. Rossert, A. R. Nissenson, D. W. Raisch, N. Casadevall, and C. L. Bennett (2008) Epoetin-associated pure red cell aplasia: Past, present, and future considerations. Transfusion 48: 1754–1762.CrossRefGoogle Scholar
  26. 26.
    Shin, S. K., S. P. Pack, J. G. Oh, N. K. Kang, M. H. Chang, Y. H. Chung, S. J. Kim, J. W. Lee, and T. H. Heo (2011) Anti-erythropoietin and anti-thrombopoietin antibodies induced after administration of recombinant human erythropoietin. Int. Immunopharmacol. 11: 2237–2241.CrossRefGoogle Scholar
  27. 27.
    Lusher, J. M. (2000) Inhibitor antibodies to factor VIII and factor IX: Management. Seminar Thromb. Hemost. 26: 179–188.CrossRefGoogle Scholar
  28. 28.
    Ehrenforth, S., W. Kreuz, I. Scharrer, R. Linde, M. Funk, T. Güngör, B. Krackhardt, and B. Kornhuber (1992) Incidence of development of factor VIII and factor IX inhibitors in haemophiliacs. Lancet 339: 594–598.CrossRefGoogle Scholar
  29. 29.
    Warrier, I., B. M. Ewenstein, M. A. Koerper, A. Shapiro, N. Key, D. DiMichele, R. T. Miller, J. Pasi, G. E. Rivard, S. S. Sommer, J. Katz, F. Bergmann, R. Ljung, P. Petrini, and J. M. Lusher (1997) Factor IX inhibitors and anaphylaxis in hemophilia B. J. Pediatr. Hematol. Oncol. 19: 23–27.CrossRefGoogle Scholar
  30. 30.
    Fineberg, S. E., J. A. Galloway, N. S. Fineberg, M. J. Rathbun, and S. Hufferd (1983) Immunogenicity of recombinant DNA human insulin. Diabetol. 25: 465–469.CrossRefGoogle Scholar
  31. 31.
    Oberg, K. and G. Alm (1997) The incidence and clinical significance of antibodies to interferon-α in patients with solid tumors. Biotherapy 10: 1–5CrossRefGoogle Scholar
  32. 32.
    Steis, R. G., J. W. Smith 2nd, W. J. Urba, J. W. Clark, L. M. Itri, L. M. Evans, C. Schoenberger, and D. L. Longo (1988) Resistance to recombinant interferon α-2a in hairy-cell leukemia associated with neutralizing anti-interferon antibodies. New Engl. J. Med. 318: 1409–1413.CrossRefGoogle Scholar
  33. 33.
    Bonetti, P., G. Diodati, C. Drago, C. Casarin, S. Scaccabarozzi, G. Realdi, A. Ruol, and A. Alberti (1994) Interferon antibodies in patients with chronic hepatitic C virus infection treated with recombinant interferon α-2a. J. Hepatol. 20: 416–420.CrossRefGoogle Scholar
  34. 34.
    Douglas, D. D., J. Rakela, H. J. Lin, F. B. Hollinger, H. F. Taswell, A. J. Czaja, J. B. Gross, M. L. Anderson, K. Parent, and C. R. Fleming (1993) Randomized controlled trial of recombinant α-2a-interferon for chronic hepatitis C. Comparison of alanine aminotransferase normalization versus loss of HCV RNA and anti-HCV IgM. Digest. Dis. Sci. 38: 601–607.CrossRefGoogle Scholar
  35. 35.
    Larocca, A. P., S. C. Leung, S. G. Marcus, C. B. Colby, and E. C. Borden (1989) Evaluation of neutralizing antibodies in patients treated with recombinant interferon-β ser. J. Interferon Res. 9: 51–60.Google Scholar
  36. 36.
    Abdul-Ahad, A. K., A. R. Galazka, M. Revel, M. Biffoni, and E. C. Borden (1997) Incidence of antibodies to interferon-β in patients treated with recombinant human interferon-β1a from mammalian cells. Cytokines Cell. Mol. Ther. 3: 27–32.Google Scholar
  37. 37.
    Myhr, K. M., C. Ross, H. I. Nyland, K. Bendtzen, and C. A. Vedeler (2000) Neutralizing antibodies to interferon (IFN) α-2a and IFN β-1a or IFN β-1b in MS are not cross-reactive. Neurol. 55: 1569–1572.CrossRefGoogle Scholar
  38. 38.
    Antonelli, G., F. Bagnato, C. Pozzilli, E. Simeoni, S. Bastianelli, M. Currenti, F. de Pisa, C. Fieschi, C. Gasperini, M. Salvetti, and F. Dianzani (1998) Development of neutralizing antibodies in patients with relapsing-remitting multiple sclerosis treated with IFN-β1a. J. Interferon Cytokine Res. 18: 345–350.CrossRefGoogle Scholar
  39. 39.
    Ullenhag, G., C. Bird, P. Ragnhammar, J. E. Frödin, K. Strigård, A. OIsterborg, R. Thorpe, H. Mellstedt, and M. Wadhwa (2001) Incidence of GM-CSF antibodies in cancer patients receiving GM-CSF for immunostimulation. Clin. Immunol. 99: 65–74.CrossRefGoogle Scholar
  40. 40.
    Wadhwa, M., C. Bird, J. Fagerberg, R. Gaines-Das, P. Ragnhammar, H. Mellstedt, and R. Thorpe (1996) Production of neutralizing granulocyte-macrophage colony-stimulating factor (GMCSF) antibodies in carcinoma patients following GM-CSF combination therapy. Clin. Exp. Immunol. 104: 351–358.CrossRefGoogle Scholar
  41. 41.
    Ragnhammar, P., H. J. Friesen, J. E. Frödin, A. K. Lefvert, M. Hassan, A. Osterborg, and H. Mellstedt (1994) Induction of antirecombinant human granulocyte-macrophage colony-stimulating factor (Escherichia coli-derived) antibodies and clinical effects in nonimmunocompromised patients. Blood 84: 4078–4087.Google Scholar
  42. 42.
    Boven, K., S. Stryker, J. Knight, A. Thomas, M. van Regenmortel, D. M. Kemeny, D. Power, J. Rossert, and N. Casadevall (2005) The increased incidence of pure red cell aplasia with an Eprex formulation in uncoated rubber stopper syringes. Kidney Int. 67: 2346–2353.CrossRefGoogle Scholar
  43. 43.
    Lusher, J. M., S. Arkin, C. F. Abildgaard, and R. S. Schwartz (1993) Recombinant factor VIII for the treatment of previously untreated patients with hemophilia A. Safety, efficacy, and development of inhibitors. Kogenate previously untreated patient study group. New Engl. J. Med. 328: 453–459.CrossRefGoogle Scholar
  44. 44.
    Bray, G. L., E. D. Gomperts, S. Courter, R. Gruppo, E. M. Gordon, M. Manco-Johnson, A. Shapiro, E. Scheibel, G. White, and M. Lee (1994) A multicenter study of recombinant factor VIII (recombinate): Safety, efficacy, and inhibitor risk in previously untreated patients with hemophilia A. The Recombinate Study Group. Blood 83: 2428–2435.Google Scholar
  45. 45.
    Kreuz, W., C. E. Ettingshausen, A. Zyschka, J. Oldenburg, I. M. Saguer, S. Ehrenforth, and T. Klingebiel (2002) Inhibitor development in previously untreated patients with hemophilia A: A prospective long-term follow-up comparing plasma-derived and recombinant products. Seminar Thromb. Hemost. 28: 285–290.CrossRefGoogle Scholar
  46. 46.
    Charles, S. A. (2005) SuperGenerics: A better alternative for bio generics. Drug Discov. Today 10: 533–535.CrossRefGoogle Scholar
  47. 47.
    Sinclair, A. M. and S. Elliott (2005) Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins. J. Pharm. Sci. 94: 1626–1635.CrossRefGoogle Scholar
  48. 48.
    Rensen, P. C., L. A. Sliedregt, M. Ferns, E. Kieviet, S. M. van Rossenberg, S. H. van Leeuwen, T. J. van Berkel, and E. A. Biessen (2001) Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J. Biol. Chem. 276: 37577–37584.CrossRefGoogle Scholar
  49. 49.
    Kim, H. J. and H. -J. Kim (2009) The effect of cell concentration on alpha 2,3-sialyltransferase activity in attachment culture of a human erythropoietin-producing Chinese hamster ovary cell line. Biotechnol. Bioproc. Eng. 14: 406–413CrossRefGoogle Scholar
  50. 50.
    Ohls, R. K. and A. Dai (2004) Long-acting erythropoietin: Clinical studies and potential uses in neonates. Clin. Perinatol. 31: 77–89.CrossRefGoogle Scholar
  51. 51.
    Egrie, J. C., E. Dwyer, J. K. Browne, A. Hitz, and M. A. Lykos (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 31: 290–299.CrossRefGoogle Scholar
  52. 52.
    Tanswell, P., N. Modi D. Combs, and T. Danays (2002) Pharmacokinetics and pharmacodynamics of tenecteplase in fibrinolytic therapy of acute myocardial infarction. Clin. Pharmacokinet. 41: 1229–1245.CrossRefGoogle Scholar
  53. 53.
    McVie-Wylie, A. J., K. L. Lee, H. Qiu, X. Jin, H. Do, R. Gotschall, B. L. Thurberg, C. Rogers, N. Raben, M. O’Callaghan, W. Canfield, L. Andrews, J. M. McPherson, and R. J. Mattaliano (2008) Biochemical and pharmacological characterization of different recombinant acid α-glucosidase preparations evaluated for the treatment of Pompe disease. Mol. Genet. Metab. 94: 448–455.CrossRefGoogle Scholar
  54. 54.
    Zhu, Y., J. L. Jiang, N. K. Gumlaw, J. Zhang, S. D. Bercury, R. J. Ziegler, K. Lee, M. Kudo, W. M. Canfield, T. Edmunds, C. Jiang, R. J. Mattaliano, and S. H. Cheng (2009) Glycoengineered acid α-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol. Ther. 17: 954–963.CrossRefGoogle Scholar
  55. 55.
    Morgan, C. and D. Fernandes (2011) Designing biobetter monoclonal antibody therapeutics by glycoengineering. Intern. Pharm. Ind. 1: 38–44.Google Scholar
  56. 56.
    Bailon, P. and C. Y. Won (2009) PEG-modified biopharmaceuticals. Expert Opin. Drug. Deliv. 6: 1–16.CrossRefGoogle Scholar
  57. 57.
    Pasut, G. and F. M. Veronese (2009) PEGylation for improving the effectiveness of therapeutic biomolecules. Drugs Today 45: 687–695.CrossRefGoogle Scholar
  58. 58.
    Jevsevar, S., M. Kunstelj, and V. G. Porekar (2010) PEGylation of therapeutic proteins. Biotechnol. J. 5: 113–128.CrossRefGoogle Scholar
  59. 59.
    Davis, S., A. Abuchowski, Y. K. Park, and F. F. Davis (1981) Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin. Exp. Immunol. 46: 649–652.Google Scholar
  60. 60.
    Asselin, B. L., J. C. Whitin, D. J. Coppola, I. P. Rupp, S. E. Sallan, and H. J. Cohen (1993) Comparative pharmacokinetic studies of three asparaginase preparations. J. Clin. Oncol. 11: 1780–1786.Google Scholar
  61. 61.
    Bailon, P., A. Palleroni, C. A. Schaffer, C. L. Spence, W. J. Fung, J. E. Porter, G. K. Ehrlich, W. Pan, Z. X. Xu, M. W. Modi, A. Farid, W. Berthold, and M. Graves (2001) Rational design of a potent, long-lasting form of interferon: A 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug. Chem. 12: 195–202.CrossRefGoogle Scholar
  62. 62.
    Glue, P., J. W. S. Fang, R. Rouzier-Panis, C. Raffanel, R. Sabo, S. K. Gupta, M. Salfi, S. Jacobs, and The Hepatitis C Intervention Therapy Group (2000) Pegylated interferon-α2b: Pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Clin. Pharmacol. Ther. 68: 556–567.CrossRefGoogle Scholar
  63. 63.
    Grigg, A., P. Solal-Celigny, P. Hoskin, K. Taylor, A. McMillan, R. Forstpointner, P. Bacon, J. Renwick, W. Hiddemann, and International Study Group (2003) Open-label, randomized study of pegfilgrastim vs. daily filgrastim as an adjunct to chemotherapy in elderly patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma 44: 1503–1508.Google Scholar
  64. 64.
    Macdougall, I. C., R. Robson, S. Opatrna, X. Liogier, A. Pannier, P. Jordan, F. C. Dougherty, and B. Reigner (2006) Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (C.E.R.A.) in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 1: 1211–1215.CrossRefGoogle Scholar
  65. 65.
    Olson, K., R. Gehant, and V. Mukku (1997) Preparation and characterization of poly(ethylene glycol)ylated human growth hormone antagonist. pp. 170–180. In: J. M. Harris and S. Zalipsky (eds.). Poly(ethylene glycol) chemistry and biological applications. American Chemical Society, Washington D. C., USA.CrossRefGoogle Scholar
  66. 66.
    Choy, E. H., B. Hazleman, M. Smith, K. Moss, L. Lisi, D. G. Scott, J. Patel, M. Sopwith, and D. A. Isenberg (2002) Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: A phase II double-blinded, randomized, dose-escalating trial. Rheumatol. 41: 1133–1137.CrossRefGoogle Scholar
  67. 67.
    Sundy, J. S., N. J. Ganson, S. J. Kelly, E. L. Scarlett, C. D. Rehrig, W. Huang, and M. S. Hershfield (2007) Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 56: 1021–1028.CrossRefGoogle Scholar
  68. 68.
    Hong, H. J. and S. T. Kim (2002) Antibody engineering. Biotechnol. Bioproc. Eng. 7: 150–154.CrossRefGoogle Scholar
  69. 69.
    Yoon, S., Y. -S. Kim, H. Shim, and J. Chung (2010) Current perspectives on therapeutic antibodies. Biotechnol. Bioproc. Eng. 15: 709–715.CrossRefGoogle Scholar
  70. 70.
    Sandhu, J. S. (1992) Protein engineering of antibodies. Crit. Rev. Biotechnol. 12: 437–462.CrossRefGoogle Scholar
  71. 71.
    Kipriyanov, S. M. and M. Little (1999) Generation of recombinant antibodies. Mol. Biotechnol. 12: 173–201.CrossRefGoogle Scholar
  72. 72.
    Weiner, L. M. (2006) Fully human therapeutic monoclonal antibodies. J. Immunother. 29: 1–9.CrossRefGoogle Scholar
  73. 73.
    Carter, P. J. (2011) Introduction to current and future protein therapeutics: A protein engineering perspective. Exp. Cell Res. 317: 1261–1269.CrossRefGoogle Scholar
  74. 74.
    Jazayeri, J. A. and G. J. Carroll (2008) Fc-based cytokines: Prospects for engineering superior therapeutics. BioDrugs 22: 11–26.CrossRefGoogle Scholar
  75. 75.
    Pugsley, M. K. (2001) Etanercept Immunex. Curr. Opin. Investig. Drugs 2: 1725–1731.Google Scholar
  76. 76.
    Krueger, G. G. and K. P. Callis (2003) Development and use of alefacept to treat psoriasis. J. Am. Acad. Dermatol. 49: 87–97.CrossRefGoogle Scholar
  77. 77.
    Lundquist, L. (2007) Abatacept: A novel therapy approved for the treatment of patients with rheumatoid arthritis. Adv. Ther. 24: 333–345.CrossRefGoogle Scholar
  78. 78.
    McDermott, M. F. (2009) Rilonacept in the treatment of chronic inflammatory disorders. Drugs Today 45: 423–430.CrossRefGoogle Scholar
  79. 79.
    Wojciechowski, D. and F. Vincenti (2010) How the development of new biological agents may help minimize immunosuppression in kidney transplantation: The impact of belatacept. Curr. Opin. Organ Transplant. 15: 697–702.CrossRefGoogle Scholar
  80. 80.
    Molineux, G. (2011) The development of romiplostim for patients with immune thrombocytopenia. Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2011.05975.Google Scholar
  81. 81.
    Skerra, A. (2007) Alternative non-antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 18: 295–304.CrossRefGoogle Scholar
  82. 82.
    Gebauer, M. and A. Skerra (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 13: 245–255.CrossRefGoogle Scholar
  83. 83.
    Löfblom, J., J. Feldwisch, V. Tolmachev, J. Carlsson, S. Ståhl, and F. Y. Frejd (2010) Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584: 2670–2680.CrossRefGoogle Scholar
  84. 84.
    Stumpp, M. T., H. K. Binz, and P. Amstutz (2008) DARPins: A new generation of protein therapeutics. Drug Discov. Today 13: 695–701.CrossRefGoogle Scholar
  85. 85.
    Skerra, A. (2008) Alternative binding proteins: Anticalins — harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J. 275: 2677–2683.CrossRefGoogle Scholar
  86. 86.
    Bradbury, A. R., S. Sidhu, S. Dübel, and J. McCafferty (2011) Beyond natural antibodies: The power of in vitro display technologies. Nat. Biotechnol. 29: 245–254.CrossRefGoogle Scholar
  87. 87.
    Löfblom, J. (2011) Bacterial display in combinatorial protein engineering. Biotechnol. J. 6: 1115–1129.CrossRefGoogle Scholar
  88. 88.
    Machold, K. P. and J. S. Smolen (2003) Adalimumab — A new TNF-α antibody for treatment of inflammatory joint disease. Expert Opin. Biol. Ther. 3: 351–360.Google Scholar
  89. 89.
    Lehmann, A. (2006) Ecallantide (Dyax/Genzyme). Curr. Opin. Investig. Drugs 7: 282–290.Google Scholar
  90. 90.
    Ki, M. K., K. J. Kang, and H. Shim (2010) Phage display selection of EGFR-specific antibodies by capture-sandwich panning. Biotechnol. Bioproc. Eng. 15: 152–156.CrossRefGoogle Scholar
  91. 91.
    Bostrom, J., S. F. Yu, D. Kan, B. A. Appleton, C. V. Lee, K. Billeci, W. Man, F. Peale, S. Ross, C. Wiesmann, and G. Fuh (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323: 1610–1614.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Central Research CenterHanmi Pharmaceutical Co., Ltd. DongtanHwaseongKorea
  2. 2.College of PharmacyYeungnam UniversityGyongsanKorea

Personalised recommendations