Biotechnology and Bioprocess Engineering

, Volume 17, Issue 4, pp 679–686 | Cite as

Evaluation and biosynthetic incorporation of chlorotyrosine into recombinant proteins

  • Niraikulam Ayyadurai
  • Kanagavel Deepankumar
  • Nadarajan Saravanan Prabhu
  • Nediljko Budisa
  • Hyungdon YunEmail author
Research Paper


Recently, non-canonical amino acids (NCAA) incorporation was developed to enhance the functional properties of proteins. Incorporation of NCAA containing chlorine atom is conceptually an attractive approach to prepare pharmacologically active substances, which is a difficult task since chlorine is bulky atom. In this study, we evaluated the efficiency and extent of in vivo incorporation of tyrosine analogue 3-chlorotyrosine [(3-Cl)Tyr] into the recombinant proteins GFP and GFPHS (highly stable GFP). The incorporation of (3-Cl)Tyr into GFP leads to dramatic reduction in the expression level of protein. On the other hand, the incorporation of (3-Cl)Tyr into GFPHS was expressed well as a soluble form. In addition we used bioinformatics tools for the analysis to explore the possible constraints in micro-environment of each natural amino acid residue to be replaced with chlorine atom accommodation into GFPHS. In conclusion, our approaches are reliable and straightforward way to enhance the translation of chlorinated amino acids into proteins.


chloro-tyrosine GFP homology modeling noncanonical amino acids protein engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rebecca, E. C. and D. A. Tirrell (2007) Non-canonical amino acids in protein polymer design. J. Macromol. Sci. Part C: Poly. Rev. 47: 9–28.Google Scholar
  2. 2.
    Johnson, J. A., Y. Y. Lu, J. A. Van Deventer, and D. A. Tirrell (2010) Residue-specific incorporation of non-canonical amino acids into proteins: Recent developments and applications. Curr. Opin. Chem. Biol. 14: 774–780.CrossRefGoogle Scholar
  3. 3.
    Moroder, L. and N. Budisa (2010) Synthetic biology of protein folding. Chemphyschem. 11: 1181–1187.CrossRefGoogle Scholar
  4. 4.
    Buss. I. H., R. Senthilmohan, B. A. Darlow, N. Mogridge, A. J. Kettle, and C. C. Winterbourn (2003) 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome. Pediatr. Res. 53: 455–462.CrossRefGoogle Scholar
  5. 5.
    Kettle, A. J., T. Chan, I. Osberg, R. Senthilmohan, A. L. P. Chapman, T. J. Mocatta, and J. S. Wagener (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 170: 1317–1323.CrossRefGoogle Scholar
  6. 6.
    Whiteman, M. and J. P. Spencer (2008) Loss of 3-chlorotyrosine by inflammatory oxidants: Implications for the use of 3-chlorotyrosine as a bio-marker in vivo. Biochem. Biophys. Res. Commun. 371: 50–53.CrossRefGoogle Scholar
  7. 7.
    Stigers, D. J., Z. I. Watts, J. E. Hennessy, H. K. Kim, R. Martini, M. C. Taylor, K. Ozawa, J. W. Keillor, N. E. Dixon, and C. J. Easton (2011) Incorporation of chlorinated analogues of aliphatic amino acids during cell-free protein synthesis. Chem. Commun. 47: 1839–1841.CrossRefGoogle Scholar
  8. 8.
    Ayyadurai, N., N. Saravanan Prabhu, K. Deepankumar, N. Soundrarajan, Y. J. Jang, N. Chitrapriya, E. Song, N. Lee, S. K. Kim, B. G. Kim, S.G. Lee, H. J. Cha, N. Budisa, and H. Yun (2011) Bioconjugation of L-3,4-dihydroxyphenylalanine containing protein with a polysaccharide. Bioconjug. Chem. 22: 551–555.CrossRefGoogle Scholar
  9. 9.
    Ayyadurai, N., K. Deepankumar, N. Saravanan Prabhu, S. G. Lee, and H. Yun (2011) A facile and efficient method for the incorporation of multiple unnatural amino acids into a single protein. Chem. Comm. 47: 3430–3432.CrossRefGoogle Scholar
  10. 10.
    Ayyadurai, N., N. Saravanan Prabhu, K. Deepankumar, S. G. Lee, H. H. Jeong, C. S. Lee, and H. Yun (2011) Development of a selective, sensitive, and reversible biosensor by the genetic incorporation of a metal-binding site into green fluorescent protein. Angew. Chem. Int. Ed. Engl. 50: 6534–6537.CrossRefGoogle Scholar
  11. 11.
    Budisa, N., W. Wengera, and B. Wiltschi (2010) Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris. Mol. Bio. Syst. 6: 1630–1639.CrossRefGoogle Scholar
  12. 12.
    Liu, C. C. and P. G. Schultz (2010) Adding new chemistries to the genetic code. Ann. Rev. Biochem. 79: 413–444.CrossRefGoogle Scholar
  13. 13.
    Lepthien. S., L. Merkel, and N. Budisa (2010) In vivo double and triple labeling of proteins using synthetic amino acids. Angew. Chem. Int. Ed. 49: 5446–5450.CrossRefGoogle Scholar
  14. 14.
    Minks, C., S. Alefelder, L. Moroder, R. Huber, and N. Budisa (2000) In vivo building and folding of protein shuttles for drug delivery and targeting by the selective pressure incorporation (SPI) method. Tetrahedron 56: 9431–9444.CrossRefGoogle Scholar
  15. 15.
    Stark, P. and R. W. Fuller (2005) Behavioral and biochemical effects of p-chlorophenylalanine, 3-chlorotyrosine and 3-chlorotyramine. A proposed mechanism for inhibition of self-stimulation. Neuropharmacol. 11: 261–272.CrossRefGoogle Scholar
  16. 16.
    Ibba, M. and H. Hennecke (1995) Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. 364: 272–275.CrossRefGoogle Scholar
  17. 17.
    Azim, M. K. and N. Budisa (2008) Docking of tryptophanyl [corrected tryptophan] analogs to trytophanyl-tRNA synthetase: implications for non-canonical amino acid incorporations. Biol. Chem. 389: 1173–1182.CrossRefGoogle Scholar
  18. 18.
    Zhang, D. Q., N. Vaidehi, W. A. Goddard, J. F. Danzer, and D. Debe (2002) Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for incorporation of Omethyl-L-tyrosine. Proc. Natl. Acad. Sci. USA. 99: 6579–6582.CrossRefGoogle Scholar
  19. 19.
    Ayyadurai, N., N. S. Prabhu, K. Deepankumar, A. Kim, S. G. Lee, and H. Yun (2011) Biosynthetic substitution of tyrosine in green fluorescent protein with its surrogate fluorotyrosine in Escherichia coli. Biotechnol. Lett. 33: 2201–2207.CrossRefGoogle Scholar
  20. 20.
    Nagasundarapandian, S., L. Merkel, N. Budisa, R. Govindan, N. Ayyadurai, S. Sriram, H. Yun, and S. Lee (2010) Engineering protein sequence composition for folding robustness renders efficient noncanonical amino acid incorporations. Chem. Bio. Chem. 11: 2521–2524.Google Scholar
  21. 21.
    Brendan, P. C., H. V. Raphael, and F. Stanley (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–36.CrossRefGoogle Scholar
  22. 22.
    Merkel, L., M. Schauer, G. Antranikian, and N. Budisa (2010) Parallel incorporation of different fluorinated amino acids: On the way to “teflon” proteins. Chem. Bio.Chem. 11: 1505–1507.Google Scholar
  23. 23.
    Kwon, I. and D. A. Tirrell (2007) Site-specific incorporation of tryptophan analogues into recombinant proteins in bacterial cells. J. Am. Chem. Soc. 129: 10431–10437.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Niraikulam Ayyadurai
    • 1
  • Kanagavel Deepankumar
    • 2
  • Nadarajan Saravanan Prabhu
    • 2
  • Nediljko Budisa
    • 3
  • Hyungdon Yun
    • 2
    Email author
  1. 1.Protein Research Chair, Department of BiochemistryKing Saud UniversityRiyadhSaudi Arabia
  2. 2.School of BiotechnologyYeungnam UniversityGyeongsanKorea
  3. 3.Biocatalysis Group, Institute of ChemistryBerlin Institute of Technology/ TU BerlinBerlinGermany

Personalised recommendations