Advertisement

Biotechnology and Bioprocess Engineering

, Volume 17, Issue 6, pp 1176–1181 | Cite as

Soybean protein: A natural source for the production of green silver nanoparticles

  • Devaraj Sasikala
  • Kasivelu Govindaraju
  • Selvaraj Tamilselvan
  • Ganesan Singaravelu
Research Paper

Abstract

The ethnopharmacological approach to the production of nanoparticles is directly related to the creation of an important symbiosis between nanoscience and medical science. Production of nanoparticles under ecofriendly conditions is of significance to address growing concerns on the overall toxicity of nanoparticles for medical and biotechnological applications. The present investigation demonstrates silver nanoparticles production capabilities of a miracle bean soybean Glycine max. We found that a single protein of soybean with a molecular weight of 51 kDa stabilizes the newly formed silver nanoparticles. The electroeluted protein has confirmed the bioreduction property of silver ions.

Keywords

silver nanoparticles biosynthesis soybean 51 kDa protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wiley, B. J., S. H. Im, J. McLellan, A. Siekkinen, and Y. Xia (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 110: 15666–15675.CrossRefGoogle Scholar
  2. 2.
    Ramirez, I. M., S. Bashir, Z. Luo, and J. L. Liu (2009) Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids and Surfaces B: Biointerf. 73: 185–191.CrossRefGoogle Scholar
  3. 3.
    Govindraju, K., V. Kiruthiga, V. Ganesh Kumar, and G. Singaravelu (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii grevilli and their antibacterial effects. J. Nanosci. Nanotechnol. 9: 5497–5501.CrossRefGoogle Scholar
  4. 4.
    Sondi, I. and B. Salopek-Sondi (2004) Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gramnegative bacteria. J. Colloids Interface Sci. 275: 177–182.CrossRefGoogle Scholar
  5. 5.
    Panacek, A., M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril, and L. Kvitek (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30: 6333–6340.CrossRefGoogle Scholar
  6. 6.
    Elechiguerra, J. L., J. Burt, J. R Morones, A. Camacho Bragado, X. Gao, H. H. Lara, and M. J. Yacaman (2005) Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3: 6–15.CrossRefGoogle Scholar
  7. 7.
    Nadworny, P. L., J. Wang, E. E. Tredget, and R. E. Burrell (2008) Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine: Nanotech. Biol. Med. 4: 241–251.CrossRefGoogle Scholar
  8. 8.
    Rogers, J. V., C. V. Parkinson, Y. W. Choi, J. L. Speshock, and S. M. Hussain (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett. 3: 129–133.CrossRefGoogle Scholar
  9. 9.
    Gurunathan, S., K. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, and S. H. Eom (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30: 6341–6350.CrossRefGoogle Scholar
  10. 10.
    Philip, D. (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectroch. Acta Part A. 77: 807–810.CrossRefGoogle Scholar
  11. 11.
    Ahmad, A., S. Senapati, M. I. Khan, R. Kumar, and M. Sastry (2003) Extra-cellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19: 3550–3553.CrossRefGoogle Scholar
  12. 12.
    Agnihotri, M., S. Joshi, A. R. Kumar, S. Zinjarde, and S. Kulkarni (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater. Lett. 63: 1231–1234.CrossRefGoogle Scholar
  13. 13.
    Ingle, A., M. Rai, A. Gade, and M. Bawaskar (2008) Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanoparticle Res. 11: 2079–2085.CrossRefGoogle Scholar
  14. 14.
    Kathiresan, K., S. Manivannan, M. A. Nabeel, and B. Divya (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerf. 71: 133–137.CrossRefGoogle Scholar
  15. 15.
    Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerf. 28: 313–318.CrossRefGoogle Scholar
  16. 16.
    Nair, B. and T. Pradeep (2002) Coalescence of nanoclusters and the formation of sub-micron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: 293–298.CrossRefGoogle Scholar
  17. 17.
    Kalimuthu, K., R. Suresh Babu, D. Venkataraman, M. Bilal, and S. Gurunathan (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerf. 65: 150–153.CrossRefGoogle Scholar
  18. 18.
    Nanda, A. and M. Saravanan (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE Nanomedicine: Nanotechnol. Biol. Med. 5: 452–456.Google Scholar
  19. 19.
    Singaravelu, G., J. Arockiyamari, V. Ganesh Kumar, and K. Govindaraju (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville Colloids and Surfaces B: Biointerf. 57: 97–101.CrossRefGoogle Scholar
  20. 20.
    Govindraju, K., S. Khaleel Basha, V. Ganesh Kumar, and G. Singaravelu (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J. Mater. Sci. 43: 5115–5123.CrossRefGoogle Scholar
  21. 21.
    Shankar, S. S., A. Rai, A. Ahmad, and M. Sastry (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275: 496–502.CrossRefGoogle Scholar
  22. 22.
    Li, S., Y. Shen, A. Xie, X. Yu, L. Qui, L. Zhang, and Q. Zhang (2007) Green synthesis of silver nanoparticles using Capsicum annum L. extract. Green Chem. 9: 852–858.CrossRefGoogle Scholar
  23. 23.
    Abu Bakar, N. H. H., J. Ismail, and M. Abu Bakar (2007) Synthesis and characterization of silver nanoparticles in natural rubber Mat. Chem. Phys. 104: 276–283.Google Scholar
  24. 24.
    Mude, N., A. Ingle, A. Gade, and M. Rai (2009) Synthesis of Silver Nanoparticles by the callus extract of Carica papaya: A first report. Plant Biochem. Biotechnol. 18: 83–86.CrossRefGoogle Scholar
  25. 25.
    Bar, H., D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009) Green Synthes of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Phys. Eng. Asp. 339: 134–139.CrossRefGoogle Scholar
  26. 26.
    Raut Rajesh, W., R. Lakkakula Jaya, S. Kolekar Niranjan, D. Mendhulkar Vijay, and B. Kashid Sahebrao (2009) Phytosynthesis of Silver Nanoparticle Using Gliricidia sepium (Jacq.) Curr. Nanosci. 5: 117–122.Google Scholar
  27. 27.
    Raghunandan, D., B. D. Mahesh, S. Basavaraja, S. D. Balaji, S. Y. Manjunath, and A. Venkataraman (2011) Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J. Nanoparticle Res. 13: 2021–2028.CrossRefGoogle Scholar
  28. 28.
    Singhal, G., R. Bhavesh, K. Kasariya, A. Ranjan Sharma, and R. Pal Singh (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanoparticle Res. 13: 2981–2988.CrossRefGoogle Scholar
  29. 29.
    Sathyavathi, R., M. Balamurali Krishna, S. Venugopal Rao, R. Saritha, and D. Narayana Rao (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett. 3: 138–143.Google Scholar
  30. 30.
    Philip, D. (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-dimen. Sys. Nanostruc. 42: 1417–1424.CrossRefGoogle Scholar
  31. 31.
    Bankar, A., B. Joshi, A. R. Kumar, and S. Zinjarde (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Phys. Eng. Asp. 368: 58–63.CrossRefGoogle Scholar
  32. 32.
    Kora, A. J., R. B. Sashidhar, and J. Arunachalam (2010) Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Poly. 82: 670–679.CrossRefGoogle Scholar
  33. 33.
    Patel, R. P., B. J. Boersma, J. H. Crawford, N. Hogg, M. Kirk, and B. Kalyanaraman, D. A. Parks, S. Barnes, and D. Usmar (2001) Antioxidant mechanisms of isoflavones in lipid systems: Paradoxical effects of peroxyl radical scavenging. Free Radic. Biol. Med. 31: 1570–1581.CrossRefGoogle Scholar
  34. 34.
    Rufer, C. E. and S. E. Kulling (2006) Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J. Agricul. Food Chem. 54: 2926–2931.CrossRefGoogle Scholar
  35. 35.
    Steinberg, F. M., N. L. Guthrie, A. C. Villablanca, K. Kumar, and M. J. Murray (2003) Soy protein with isoflavones has favorable effects on endothelial function that are independent of lipid and antioxidant effects in healthy postmenopausal women. Am. J. Clin. Nut. 78: 123–130.Google Scholar
  36. 36.
    Choi, J. M., H. J. Ryu, J. H. Chung, J. C. Park, J. K. Hwang, D. B. Shin, S. K. Lee, and R. Ryang (2005) Antioxidant property of genistein: Inhibitory effect on HOCl induced protein degradation, DNA cleavage, and cell death. Food Sci. Biotechnol. 14: 399–404.Google Scholar
  37. 37.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.CrossRefGoogle Scholar
  38. 38.
    Sathish, S., C. Selvakkumar, A. S. Sahul Hameed, and R. B. Narayanan (2004) 18-kDa protein as a marker to detect WSSV infection in shrimps. Aquaculture 238: 39–50.CrossRefGoogle Scholar
  39. 39.
    Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.Google Scholar
  40. 40.
    Khaleel Basha, S., K. Govindaraju, R. Manikandan, J. Ahn, E. Y. Bae, and G. Singaravelu (2010) Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids and Surf. B: Biointerf. 75: 405–409.CrossRefGoogle Scholar
  41. 41.
    Vignehwaran, N., A. A. Kathe, P. V. Varadarajan, R. P. Nachane, and R. H. Balasubramanya (2007) A simple route for the synthesis of silverprotein (core-shell) Nanoparticles using spent mushroom substrate (SMS). Lamgmuir 23: 7113–7117.CrossRefGoogle Scholar
  42. 42.
    Shankar, S. S., A. Ahmad, and M. Sastry (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotecnol. Prog. 19: 1627–1631.CrossRefGoogle Scholar
  43. 43.
    Huang, J., Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol. 18: 105104–105114.CrossRefGoogle Scholar
  44. 44.
    Devillers, J., M. Moriot, M. H. P-Delegue, and J. C. Dore (2004) Classification of monofloral honeys based on their quality control data. Food Chem. 86: 305–312.CrossRefGoogle Scholar
  45. 45.
    Magudapathy, P., P. Gangopadhyay, B. K. Panigrahi, K. G. M. Nair, and S. Dhara (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B 299: 142–146.CrossRefGoogle Scholar
  46. 46.
    Conner, E. E., J. Mwamuks, A. Gole, C. J. Murphy, and M. D. Wyatt (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1: 325–327.CrossRefGoogle Scholar
  47. 47.
    Alanazi, F. K., A. A. Radwan, and I. A. Alsarra (2010) Biopharmaceutical applications of nanogold. Saudi Pharm J. 18: 179–193.CrossRefGoogle Scholar
  48. 48.
    Pal, A., S. Shah, and S. Devi (2007) Preparation of silver, gold and silver-gold bimetallic nanoparticles in w/o microemulsion containing Triton X-100. Colloids Surf. A: Physicochem. Eng. Aspects 302: 483–487.CrossRefGoogle Scholar
  49. 49.
    Han, M., X. Gao, J. Z. Su, and S. Nie (2001) Quantum-dottagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19: 631–635.CrossRefGoogle Scholar
  50. 50.
    Duran, N., P. D. Marcato, S. De, I. H. Gabrie, O. L. Alves, and E. Esposito (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203–208.CrossRefGoogle Scholar
  51. 51.
    Bhumkar, D. R., H. M. Joshi, M. Sastry, and V. B. Pokharkar (2007) Chitosan reduced gold nanoparticles as novel carriers for tranmucosal delivery of insulin. Pharm. Res. 24:1415–1426.CrossRefGoogle Scholar
  52. 52.
    Pulliam, B., J. C. Sung, and D. A. Edwards (2007) Design of nanoparticle-based dry powder pulmonary vaccines. Exp. Opin Drug Deliv. 4: 651–663.CrossRefGoogle Scholar
  53. 53.
    Noh, S. M., W. K. Kim, S. J. Kim, J. M. Kim, K. H. Baek, and Y. K. Oh (2007) Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles. Biochim. Biophys. Acta 1770: 747–752.CrossRefGoogle Scholar
  54. 54.
    Praetorius, N. P. and T. K. Mandal (2007) Engineered nanoparticles in cancer therapy. Recent Patents on Drug Deliv. Form. 1: 37–51.CrossRefGoogle Scholar
  55. 55.
    Parashar, V., R. Parashar, B. Sharma, and A. Pandey (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization. Digest J. Nanomater. Biostruc. 4: 45–50.Google Scholar
  56. 56.
    Ankamwar, B., C. Damle, A. Ahmad, and M. Sastry (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotechnol. 5: 1665–1671.CrossRefGoogle Scholar
  57. 57.
    Gardea-Torresdey, J. L., E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman (2003) Alfalfa sprout: A natural source for the synthesis of silver nanoparticles Langmuir 19: 1357–1361.CrossRefGoogle Scholar
  58. 58.
    Haverkamp, R. G., A. T. Marshall, and D. Van Agterveld (2007) Pick your Carats: Nanoparticles of gold-silver-copper alloy produced in vivo. J. Nanoparticle Res. 9: 697–700.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Devaraj Sasikala
    • 1
  • Kasivelu Govindaraju
    • 3
  • Selvaraj Tamilselvan
    • 2
  • Ganesan Singaravelu
    • 2
  1. 1.Department of ZoologyD. K. M College for WomenVelloreIndia
  2. 2.Nanoscience Division, Department of ZoologyThiruvalluvar UniversityVelloreIndia
  3. 3.Centre for Ocean ResearchSathybama UniversityChennaiIndia

Personalised recommendations