Biotechnology and Bioprocess Engineering

, Volume 17, Issue 4, pp 827–834 | Cite as

Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the Box-Behnken method

  • Chin-Fa Hwang
  • Jen-Han Chang
  • Jer-Yiing Houng
  • Cheng-Chih Tsai
  • Chien-Ku Lin
  • Hau-Yang Tsen
Research Paper


An immune-enhancing strain, Lactobacillus plantarum Pi06, isolated from a healthy infant was used for biomass production following optimization of the medium in shake-flask culture. Preliminary studies showed that commercial MRS medium and cultivation under static conditions generated higher biomass production than four other tested media with or without a shaking condition. The selected medium composition, consisting of glucose, yeast extract, soy peptone, ammonium citrate, and corn steep liquor, was further optimized using a systematic method that integrated the Taguchi array design and the Box-Behnken method. The response effects of these factors were first investigated using Taguchi design under an L 16 (45) array. The suggested medium composition, derived from Statistica 7.1 using the Taguchi design, was applied to cultivate cells and a biomass of 7.16 g dry cell weight (DCW)/L was obtained. Response surface methodology based on the Box-Behnken method for the three response variables of glucose, yeast extract, and corn steep liquor was then used to further increase the biomass level to 8.94 g DCW/L. The resulting optimum medium consisted of 35 g/L glucose, 35 g/L yeast extract, and 40 mL/L corn steep liquor. Compared with the initial medium, the biomass yield was improved from 4.31 to 8.94 g DCW/L, an enhancement of approximately 107%.


medium optimization biomass production Lactobacillus plantarum Taguchi array design Box-Behnken method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Vries, M. C., E. E. Vaughan, M. Kleerebezem, and W. M. de Vos (2006) Lactobacillus plantarum — survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16: 1018–1028.CrossRefGoogle Scholar
  2. 2.
    Gupta, S., N. Abu-Ghannam, and A. G. M. Scannell (2010) Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown sea weeds. Food Bioprod. Proc. 89: 346–355.CrossRefGoogle Scholar
  3. 3.
    Hwang, C. F., J. N. Chen, Y. H. Huang, and Z. Y. Mao (2011) Biomass production of Lactobacillus plantarum LP02 isolated from infant feces with potential cholesterol lowering ability. Afr. J. Biotechnol. 10: 7010–7020.Google Scholar
  4. 4.
    Bustos, G., A. B. Moldes, J. L. Alonso, and M. Vazquez (2004) Optimization of D-lactic acid production by Lactobacillus coryniformis using response surface methodology. Food Microbiol. 21: 143–148.CrossRefGoogle Scholar
  5. 5.
    Delgado, A., F. N. A. López, D. Brito, C. Peres, P. Fevereiro, and A. Garrido-Fernández (2007) Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetic. J. Biotechnol. 130: 193–201.CrossRefGoogle Scholar
  6. 6.
    Desai, K. M., S. K. Akolkar, Y. P. Badhe, S. S. Tambe, and S. S. Lele (2006) Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques. Proc. Biochem. 41: 1842–1848.CrossRefGoogle Scholar
  7. 7.
    Li, C., J. Bai, Z. Cai, and F. Ouyang (2002) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. Biotechnol. 93: 27–34.CrossRefGoogle Scholar
  8. 8.
    Mu, W., C. Chen, X. Li, T. Zhang, and B. Jiang (2009) Optimization of culture medium for the production of phenyllactic acid by Lactobacillus sp. SK007. Bioresour. Technol. 100: 1366–1370.CrossRefGoogle Scholar
  9. 9.
    Tari, C., F. I. Ustok, and S. Harsa (2009) Optimization of the associative growth of novel yogurt cultures in the production of biomass, β-galactosidase and lactic acid using response surface methodology. Int. Dairy J. 19: 236–243.CrossRefGoogle Scholar
  10. 10.
    Tsapatsaris, S. and P. Kotzekidou (2004) Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. Int. J. Food Microbiol. 95: 157–168.CrossRefGoogle Scholar
  11. 11.
    Verellen, T. L. J., G. Bruggeman, C. A. Van Reenen, L. M. T. Dicks, and E. J. Vandamme (1998) Fermentation optimization of plantaricin 423, a bacteriocin by Lactobacillus plantarum 423. J. Ferm. Bioeng. 86: 174–179.CrossRefGoogle Scholar
  12. 12.
    Dawson, E. A. and P. A. Barnes (1992) A new approach to the statistical optimization of catalyst preparation. Appl. Catal. A. Gen. 90: 217–231.Google Scholar
  13. 13.
    Liew, S. L., A. B. Ariff, A. R. Raha, and Y. W. Ho (2005) Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology. Int. J. Food Microbiol. 102: 137–142.CrossRefGoogle Scholar
  14. 14.
    Sen, R. and K. S. Babu (2005) Modeling and optimization of the process conditions for biomass production and sporulation of a probiotic culture. Proc. Biochem. 40: 2531–2538.CrossRefGoogle Scholar
  15. 15.
    Kiviharju, K., M. Leisola, and T. Eerikainen (2005) Optimization of a Bifidobacterium longum production process. J. Biol. 117: 299–308.Google Scholar
  16. 16.
    Maghsoodloo, S., G. Ozdemir, V. Jordan, and C. H. Huang (2004) Strengths and limitations of Taguchi’s contributions to quality, manufacturing, and process engineering. J. Manufact. Syst. 23: 73–126.CrossRefGoogle Scholar
  17. 17.
    Chang, M. Y., G. J. Tsai, and J. Y. Houng (2006) Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enz. Microb. Technol. 38: 407–414.CrossRefGoogle Scholar
  18. 18.
    Kim, K. D., D. N. Han, and H. T. Kim (2004) Optimization of experimental conditions based on the Taguchi robust design formation of nano-sized silver particles by chemical reduction method. Chem. Eng. J. 104: 55–61.CrossRefGoogle Scholar
  19. 19.
    Sharma, P., A. Verma, R. K. Sidhu, and O. P. Pandey (2005) Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. J. Mater. Proc. Technol. 168: 147–151.CrossRefGoogle Scholar
  20. 20.
    Shravani, D., P. K. Lakshmi, and J. Balasubramaniam (2011) Preparation and optimization of various parameters of enteric coated pellets using the Taguchi L9 orthogonal array design and their characterization. Acta Pharmaceut. Sin. B 1: 56–63.CrossRefGoogle Scholar
  21. 21.
    Ferreira, S. L. C., R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandao, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, and W. N. L. dos Santos (2007) Box-Behnken design design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 597: 179–186.CrossRefGoogle Scholar
  22. 22.
    Ragonese, R., M. Macka, J. Hughes, and P. Petocz (2002) The use of the Box-Behnken experimental design in the optimization and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation. J. Pharmaceut. Biomed. 27: 995–1007.CrossRefGoogle Scholar
  23. 23.
    Oh, H., Y. J. Wee, J. S. Yun, S. H. Han, S. Jung, and H. W. Ryu (2005) Lactic acid production from agricultural resources as cheap raw materials. Bioresour. Technol. 96: 1492–1498.CrossRefGoogle Scholar
  24. 24.
    Yu, L., T. Lei, X. Ren, X. Pei, and Y. Feng (2008) Response surface optimization of L-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem. Eng. J. 39: 496–502.CrossRefGoogle Scholar
  25. 25.
    Goncëalves, L. M. D., A. Ramos, J. S. Almeida, A. M. R. B. Xavier, and M. J. T. Carrondo (1997) Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus. Appl. Microbiol. Biotechnol. 48: 346–350.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chin-Fa Hwang
    • 1
  • Jen-Han Chang
    • 1
  • Jer-Yiing Houng
    • 2
  • Cheng-Chih Tsai
    • 1
  • Chien-Ku Lin
    • 1
  • Hau-Yang Tsen
    • 1
  1. 1.Department of Food Science and TechnologyHungkuang UniversityTaichungTaiwan
  2. 2.Department of Chemical EngineeringI-Shou UniversityKaohsiungTaiwan

Personalised recommendations