Biotechnology and Bioprocess Engineering

, Volume 17, Issue 3, pp 606–616 | Cite as

Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei

  • Mukesh Kumar
  • Alok Kumar Jain
  • Moushumi Ghosh
  • Abhijit Ganguli
Research Paper

Abstract

Antimicrobial proteinaceous compounds such as bacteriocins produced from Lactobacillus sp. are widely known. They have potential antimicrobial activities towards closely related bacteria and several pathogens associated with food spoilage and hence can be a potential food bio-preservative agent. Bacteriocin production requires optimized process, complex media and well-controlled physical conditions including pH and temperature. A probiotic strain of L. casei LA-1 isolated from mango pickle was used in the present study. The influence of physical parameters viz. temperature (15 ∼ 45°C), pH (4.0 ∼ 7.0), incubation time (up to 48 h) and inoculum size (0.7 ∼ 2.0 O.D) on bacteriocin production was analyzed. The effect of all the parameters was first investigated using the one-factor-at-a-time method (OFAT) to see the significance of these parameters on bacteriocin production and then further optimized by response surface methodology (RSM). Following OFAT analysis, all factors were found to have a significant effect on bacteriocin production. Bacteriocin production of 2,844 AU/mL was obtained at temperature 37°C, pH 6.7 and inoculum size 1.8 O.D at an incubation time of 20 h and it was produced during the stationary phase of growth. Statistical analysis showed that three variables-pH, temperature and incubation time have significant effects on bacteriocin production. RSM proved to be a powerful tool in the optimization of bacteriocin production by L. casei LA-1 with a two-fold increase, giving a production of 4652.15 AU/mL at pH 7.19, temperature 33.3°C and incubation time of 22.2 h.

Keywords

L. casei bacteriocin optimization response surface methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilar, A. (1991) Biotechnology of lactic acid bacteria: An European perspective. Food Biotechnol. 5: 323–330.CrossRefGoogle Scholar
  2. 2.
    Stiles, M. E. (1996) Biopreservation by lactic acid bacteria. Anton van Leeuw 70: 331–345.CrossRefGoogle Scholar
  3. 3.
    Marrug, J. D. (1995) Bacteriocins, their role in developing natural products. Food Biotechnol. 5: 305–312.CrossRefGoogle Scholar
  4. 4.
    Holzapfel, W. H., R. Geisen, and U. Schillinger (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24: 343–362.CrossRefGoogle Scholar
  5. 5.
    Holtzel, A., M. G. Ganzle, G. J. Nicholson, W. P. Hammes, and G.. Jung (2000) The first low-molecular-weight antibiotic from lactic acid bacteria: Reutericyclin, a new tetramic acid Angewandte. Chem. Int. Edi. 39: 2766–2768.CrossRefGoogle Scholar
  6. 6.
    Magnusson, J. and J. Schnürer (2001) Lactobacillus coryniformis subsp Coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67: 1–5.CrossRefGoogle Scholar
  7. 7.
    Daeschel, M. A. (1993) Applications and interactions of bacteriocins from lactic acid bacteria in foods and beverages. pp. 63–91. In: D. G. Hoover and L. R. Steenson (eds.). Bacteriocins of lactic acid bacteria. Academic Press Inc., NY.Google Scholar
  8. 8.
    De Vuyst, L. and E. J. Vandamme (1994) Lactic acid bacteria and bacteriocins: their practical importance. pp. 1–11. In: L. de Vuyst and E. J. Vandamme (eds.). Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications. Blackie Academic and Professional, London, UK.Google Scholar
  9. 9.
    Ray, B. and M. A. Daeschel (1994) Bacteriocins of starter culture bacteria. pp. 133–165. In: V. M. Dillon and R. G. Board (eds.). Natural antimicrobial systems and food preservation. CAB International, Wallingford, Oxfordshire, UK.Google Scholar
  10. 10.
    Antonio Gálvez, Hikmate Abriouel, Rosario Lucas López, and Nabil Ben Omar (2007) Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120: 51–70.CrossRefGoogle Scholar
  11. 11.
    Dodd, H. M. and M. J. Gasson (1994) Bacteriocins of lactic acid bacteria. pp. 211–255. In: M. J. Gasson and W. M. de Vos (eds.). Genetics and biotechnology of lactic acid bacteria. Blackie Academic and Professional, London, UK.CrossRefGoogle Scholar
  12. 12.
    Piard, J. -C. and M. J. Desmazeaud (1992) Inhibiting factors produced by lactic acid bacteria 2 Antibacterial substances and bacteriocins. Lait. 72: 113–142.CrossRefGoogle Scholar
  13. 13.
    Eijsink, V. G. H., L. Axelsson, D. B. Diep, L. S. Håvarstein, H. Holo, and I. F. Nes (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Anton. van Leeuw. 81: 639–654.CrossRefGoogle Scholar
  14. 14.
    Holo, H. and I. F. Nes (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopol. 55: 50–61.CrossRefGoogle Scholar
  15. 15.
    Jack, R. W., J. R. Tagg, and B. Ray (1995) Bacteriocins of Grampositive bacteria. Microbiol. Rev. 59: 171–200.Google Scholar
  16. 16.
    Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39–86.Google Scholar
  17. 17.
    Leal-Sánchez, M. V., R. Jiménez-Díaz, A. Maldonado-Barragán, A. Garrido-Fernández, and J. L. Ruiz-Barba (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 68: 4465–4471.CrossRefGoogle Scholar
  18. 18.
    Cássia Regina Nespolo and Adriano Brandelli (2010) Production of bacteriocin-like substances by lactic acid bacteria isolated from regional ovine cheese. Braz. J. Microbiol. 41: 1009–1018CrossRefGoogle Scholar
  19. 19.
    Beatriz Robredo and Carmen Torres (2000) Bacteriocin production by Lactobacillus salivarius of animal origin. J. Clin. Microbiol. 38: 3908–3909.Google Scholar
  20. 20.
    Yang, R. and B. Ray (1994) Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiol. 11: 281–291.CrossRefGoogle Scholar
  21. 21.
    Carolissen-Mackay, V., G. Arendse, and J. W. Hastings (1997) Purification of bacteriocins of lactic acid bacteria: Problems and pointers. Int. J. Food Microbiol. 34: 1–16.CrossRefGoogle Scholar
  22. 22.
    Daba, H., C. Lacroix, J. Huang, and R. E. Simard (1993) Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Appl. Microbiol. Biotechnol. 39: 166–173.CrossRefGoogle Scholar
  23. 23.
    De Vuyst, L. and E. J. Vandamme (1991) Microbial manipulation of nisin biosynthesis and fermentation. pp. 397–409. In: G. Jung and H. -G. Sahl (eds.). Nisin and novel lantibiotics. ESCOM Science Publishers, Leiden, The Netherlands.Google Scholar
  24. 24.
    Kaiser, A. L. and T. J. Montville (1993) The influence of pH and growth rate on production of the bacteriocin, bavaricin MN, in batch and continuous fermentations. J. Appl. Bacteriol. 75: 536–540.CrossRefGoogle Scholar
  25. 25.
    Leroy, F. and L. De Vuyst (1999) Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. Appl. Environ. Microbiol. 6: 974–981.Google Scholar
  26. 26.
    Møortvedt-Abildgaard, C. I., J. Nissen-Meyer, B. Jelle, B. Grenov, M. Skaugen, and I. F. Nes (1995) Production and pH-dependent bactericidal activity of lactocin S, a lantibiotic from Lactobacillus sake L45. Appl. Environ. Microbiol. 61: 175–179.Google Scholar
  27. 27.
    Parente, E. and A. Ricciardi (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Let. Appl. Microbiol. 19: 12–15.CrossRefGoogle Scholar
  28. 28.
    Adinarayana, K., P. Ellaiah, B. Srinivasulu, R. B. Devi, and G. Adinarayana (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Proc. Biochem. 38: 1565–1572.CrossRefGoogle Scholar
  29. 29.
    Oh, S., S. Rheem, J. Sim, S. Kim, and Y. Baek (1995) Optimizing conditions for the growth of Lactobacillus casei YIT 9018 in tryptone-glucose medium by using response surface methodology. Appl. Environ. Microbiol. 61: 3809–3814.Google Scholar
  30. 30.
    Li, C., J. Bai, Z. Cai, and F. Ouyang (2001) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. biotechnol. 93: 27–34.CrossRefGoogle Scholar
  31. 31.
    Kumar, M., M. Ghosh, and A. Ganguli (2011) Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverages. World J. Microbiol. Technol. (In press) DOI 10.1007/s11274-011-0866-4.Google Scholar
  32. 32.
    Motta, A. S. and A. Brandelli (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J. Appl. Microbiol. 92: 63–71.CrossRefGoogle Scholar
  33. 33.
    Kimura, H., T. Sashihara, H. Matsusaki, K. Sonomoto, and A. Ishizaki (1998) Novel bacteriocin of Pediococcus sp ISK-1 isolated from wellaged bed of fermented rice. Bran. Ann. NY Acad. Sci. 864: 345–348.CrossRefGoogle Scholar
  34. 34.
    Myers, R. and R. C. Montgomery (2002) Response surface methodology: PROCESS and product optimization using designed experiments. Wiley, NY.Google Scholar
  35. 35.
    Kim, M. H., Y. J. Kong, H. Baek, and H. Hyun (2006) Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp GO5. J. Biotechnol. 121: 54–61.CrossRefGoogle Scholar
  36. 36.
    Matsusaki, H., N. Endo, K. Sonomoto, and A. Ishizaki (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: Relationship between production of the lantibiotic and lactate and cell growth. Appl. Microbiol. Biotechnol. 45: 36–41.CrossRefGoogle Scholar
  37. 37.
    Cheigh, C. I., H. J. Choi, H. Park, S. B. Kim, M. C. Kook, T. S. Kim, J. K. Hwang, and Y. R. Pyun (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotechnol. 95: 225–235.CrossRefGoogle Scholar
  38. 38.
    Parente, E., A. Ricciardi, and G. Addario (1994) Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. Lactis 140NWC during batch fermentation. Appl. Microbiol. Biotechnol. 41: 388–394.Google Scholar
  39. 39.
    De Vuyst, L., R. Callewaert, and K. Crabbé (1996) Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiol. 142: 817–827.CrossRefGoogle Scholar
  40. 40.
    Vignolo, G. M., M. N. Kairuz, A. A. P. Ruiz-Holgado, and G. Oliver (1995) Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705. J. Appl. Bacteriol. 78: 5–10.CrossRefGoogle Scholar
  41. 41.
    Krier, F., A. M. Revol-Junelles, and P. Germain (1998) Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Appl. Microbiol. Biotechnol. 50: 359–363.CrossRefGoogle Scholar
  42. 42.
    Pilet, M. F., X. Dousset, R. Barre, G. Novel, M. Desmazeaud, and J. C. Piard (1995) Evidence for two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fishand active against Listeria monocytogenes. J. Food Prot. 58: 256–262.Google Scholar
  43. 43.
    Stoffels, G., I. Nes, and A. Guomundsdottir (1992) Isolation and properties of a bacteriocin Carnobacterium piscicola isolated from fish. J. Appl. Bacteriol. 73: 309–316.CrossRefGoogle Scholar
  44. 44.
    Biswas, S. R., P. Ray, M. C. Johnson, and B. Ray (1991) Influence of growth conditions on the production of a Bacteriocin, Pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57: 1265–1267.Google Scholar
  45. 45.
    Hurst, A. (1981) Nisin. In: D. Perlman and A. Laskin (eds.). Advances in Applied Microbiology. Academic Press, NY.Google Scholar
  46. 46.
    Olson, E. R. (1993) Influence of pH on bacterial gene expression. Mol. Microbiol. 8: 5–14.CrossRefGoogle Scholar
  47. 47.
    Cladera-Olivera, F., G. R. Caron, and A. Brandelli (2004) Bacteriocin production by Bacillus licheniformis P40 in cheese whey using response surface methodology. Biochem. Eng. J. 21: 53–58.CrossRefGoogle Scholar
  48. 48.
    Mataragas, M., J. Metaxopoulos, M. Galiotou, and E. H. Drosinos (2003) Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci. 64: 265–271.CrossRefGoogle Scholar
  49. 49.
    Cabo, M. L., M. A. Murado, M. Gonzalez, and L. Pastoriza (2001) Effect of aeration and pH gradient on nisin production A mathematical model. Enz. Microbe Technol. 29: 264–273.CrossRefGoogle Scholar
  50. 50.
    De Vuyst, L. (1995) Nutritional factors affecting nisin production by Lactococcus lactis subsp lactis NIZO 22186 in a synthetic medium. J. Appl. Bacteriol. 78: 28–33.CrossRefGoogle Scholar
  51. 51.
    Motta, A. S. and A. Brandelli (2003) Influence of growth conditions on bacteriocin production by Brevibacterium linens. Appl. Microbiol. Biotechnol. 62: 163–167.CrossRefGoogle Scholar
  52. 52.
    Kim, W. S., R. J. Hall, and N. W. Dunn (1997) The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl. Microbiol. Biotechnol. 50: 429–433.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mukesh Kumar
    • 1
  • Alok Kumar Jain
    • 1
  • Moushumi Ghosh
    • 1
  • Abhijit Ganguli
    • 1
  1. 1.Department of Biotechnology and Environmental SciencesThapar UniversityPatialaIndia

Personalised recommendations