Advertisement

Biotechnology and Bioprocess Engineering

, Volume 17, Issue 2, pp 290–297 | Cite as

Fundamental analysis of real-time PCR quantification and modeling for thermophilic L-lactate fermentation by Bacillus coagulans from glucose

  • Taira HidakaEmail author
  • Hiroshi Tsuno
  • Haruka Yagi
  • Yusuke Kosaka
Research Paper

Abstract

Batch and semi-continuous thermophilic l-lactate fermentation experiments were performed using Bacillus coagulans and glucose as a substrate. Reactor performance and biomass concentrations were assessed using two methods: turbidity as a traditional biomass index and real-time polymerase chain reaction (PCR) quantification of 16S rRNA genes. In the batch experiment, although the relationship between turbidity and real-time PCR assay differed depending on the growth phase, a correlation was observed between both assay methods. In the semi-continuous experiment, real-time PCR measurement was well suited for use as an index for evaluating bacterial mass under different organic loading conditions. A mathematical model was applied to evaluate the real-time PCR quantification to long-term, semi-continuous lactate fermentation. Lactate fermentation was well suited since only B. coagulans was involved in the reactions. The results obtained revealed a fundamental relationship between real-time PCR and traditional biomass analyses.

Keywords

real-time PCR Bacillus coagulans lactate fermentation turbidity inhibition glucose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batstone, D. J., J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, and V. A. Vavilin (2002) Anaerobic Digestion Model No.1. International Water Association (IWA) Publishing, London, UK.Google Scholar
  2. 2.
    Hidaka, T., T. Horie, S. Akao, and H. Tsuno (2010) Kinetic model of thermophilic L-lactate fermentation by Bacillus coagulans combined with real-time PCR quantification. Water Res. 44: 2554–2562.CrossRefGoogle Scholar
  3. 3.
    Michelson, T., K. Kask, E. Jõgi, E. Talpsep, I. Suitso, and A. Nurk (2006) L(+)-Lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073. Enz. Microbial. Technol. 39: 861–867.CrossRefGoogle Scholar
  4. 4.
    Payot, T., Z. Chemaly, and M. Fick (1999) Lactic acid production by Bacillus coagulans-kinetic studies and optimization of culture medium for batch and continuous fermentations. Enz. Microbial. Technol. 24: 191–199.CrossRefGoogle Scholar
  5. 5.
    Kobayashi, T., D. Yasuda, Y. Li, K. Kubota, H. Harada, and H. Yu (2009) Characterization of start-up performance and archaeal community shifts during anaerobic self-degradation of waste-activated sludge. Bioresour. Technol. 100: 4981–4988.CrossRefGoogle Scholar
  6. 6.
    Furet, J., P. Quénée, and P. Tailliez (2004) Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. J. Food Microbiol. 97: 197–207.CrossRefGoogle Scholar
  7. 7.
    Wang, M. Y., B. H. Olson, and J. S. Chang (2008) Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor. Appl. Microbiol. Biotechnol. 78: 525–532.CrossRefGoogle Scholar
  8. 8.
    Wang, M., Y. Tsai, B. H. Olson, and J. Chang (2008) Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR. Int. J. Hydrogen Energy 33: 4730–4738.CrossRefGoogle Scholar
  9. 9.
    Akao, S., H. Tsuno, T. Horie, and S. Mori (2007) Effects of pH and temperature on products and bacterial community in L-lactate batch fermentation of garbage under unsterile condition. Water Res. 41: 2636–2642.CrossRefGoogle Scholar
  10. 10.
    DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  11. 11.
    APHA, AWWA, WEF (1995) Standard methods for the examination of water and wastewater. 19th ed., Washington D. C., American Public Health Association Publications.Google Scholar
  12. 12.
    Lin, J. Q., S. M. Lee, and Y. M. Koo (2004) Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose. Biotechnol. Bioproc. Eng. 9: 52–58.CrossRefGoogle Scholar
  13. 13.
    Haldane, J. B. S. (1930) Enzymes. Longmans, LondonGoogle Scholar
  14. 14.
    Burgos-Rubio, C. N., M. R. Okos, and P. C. Wankat (2000) Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnol. Prog. 16: 305–314.CrossRefGoogle Scholar
  15. 15.
    Gray, N. F. (2004) Biology of Wastewater Treatment. 2nd ed., Imperial College Press, London, UK.CrossRefGoogle Scholar
  16. 16.
    Cicek, N., J. Macomber, J. Davel, M. T. Suidan, J. Audic, and P. Genestet (2001) Effect of solids retention time on the performance and biological characteristics of a membrane bioreactor. Water Sci. Technol. 43: 43–50.Google Scholar
  17. 17.
    Tsuno, H., T. Hidaka, and F. Nishimura (2002) A simple biofilm model of bacterial competition for attached surface. Water Res. 36: 996–1006.CrossRefGoogle Scholar
  18. 18.
    Hidaka, T., H. Tsuno, and N. Kishimoto (2003) Advanced treatment of sewage by pre-coagulation and biological filtration process. Water Res. 37: 4259–4269.CrossRefGoogle Scholar
  19. 19.
    Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. van Lier (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 59: 927–934.CrossRefGoogle Scholar
  20. 20.
    Harms, G., A. C. Layton, H. M. Dionisi, I. R. Gregory, V. M. Garrett, S. A. Hawkins, K. G. Robinson, and G. S. Sayler (2003) Real-time pcr quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343–351.CrossRefGoogle Scholar
  21. 21.
    Ha, J. H., T. Hidaka, and H. Tsuno (2011) Analysis of factors affecting the ratio of microcystin to chlorophyll-a in cyanobacterial blooms using real-time polymerase chain reaction. Environ. Toxicol. 26: 21–28.CrossRefGoogle Scholar
  22. 22.
    Hidaka, T., T. Asahira, H. Koshikawa, J. Cheon, Y. Park, and H. Tsuno (2010) Effect of microbial composition on thermophilic acid fermentation. Enz. Microb. Technol. 47: 127–133.CrossRefGoogle Scholar
  23. 23.
    Ramirez, I., E. I. P. Volcke, R. Rajinikanth, and J. Steyer (2009) Modeling microbial diversity in anaerobic digestion through an extended ADM1 model. Water Res. 43: 2787–2800.CrossRefGoogle Scholar
  24. 24.
    Cheon, J., T. Hidaka, S. Mori, H. Koshikawa, and H. Tsuno (2008) Applicability of random cloning method to analyze microbial community in full-scale anaerobic digesters. J. Biosci. Bioeng. 106: 134–140.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Taira Hidaka
    • 1
    Email author
  • Hiroshi Tsuno
    • 1
  • Haruka Yagi
    • 1
  • Yusuke Kosaka
    • 1
  1. 1.Department of Environmental EngineeringKyoto UniversityKyotoJapan

Personalised recommendations