Alginate lyase: Structure, property, and application

Invited Review

Abstract

Alginate is a linear polysaccharide in which β-D-mannuronate (M) and its epimer, α-L-guluronate (G), are covalently (1–4)-linked in different sequences. Alginate is mainly used as a food additive to modify food texture due to its high viscosity and gelling property. Alginate lyase can degrade alginate by cleaving the glycosidic bond through a β-elimination reaction, generating oligomer with 4-deoxy-L-erythro-hex-4-enepyranosyluronate at the nonreducing end. Alginate oligosaccharides have been shown to stimulate the growth of human endothelial cells and the secretion of cytotoxic cytokines from human macrophage. Alginate can be converted into unsaturated monosaccharide by saccharification process using endolytic and exolytic alginate lyases, thus alginate lyases have potential as key biocatalyst for application of alginate as a renewable source for biochemicals and biofuels in near future. In this paper, structures and functions of various alginate lyases are reviewed. Prospects on future applications of alginate lyases are also discussed.

Keywords

alginate alginate lyase alginate oligosaccharides unsaturated monosaccharide 

References

  1. 1.
    Wong, T. Y., L. A. Preston, and N. L. Schiller (2000) Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and application. Annu. Rev. Microbiol. 54: 289–340.CrossRefGoogle Scholar
  2. 2.
    Campa, C., S. Holtan, N. Nilsen, T. M. Bjerkan, B. T. Stokke, and G. Skjåk-Bræk (2004) Biochemical analysis of the processive mechanism for epimerization of alginate by mannuronan C-5 epimerase AlgE4. Biochem. J. 381: 155–164.CrossRefGoogle Scholar
  3. 3.
    Matsubara, Y., R. Kawada, K. Iwasaki, Y. Kimura, T. Oda, and T. Muramatsu (2000) Cloning and sequence analysis of a gene (aly PG) encoding poly-(α-L-guluronate) lyase from Corynebacterium sp. strain ALY-1. J. Biosci. Bioeng. 89: 199–202.CrossRefGoogle Scholar
  4. 4.
    Albrecht, M. T. and N. L. Schiller (2005) Alginate Lyase (AlgL) Activity is required for alginate biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 187: 3869–3872.CrossRefGoogle Scholar
  5. 5.
    Clementi, F. (1997) Alginate production by Azotobacter vinelandii. Crit. Rev. Biotechnol. 17: 327–361.CrossRefGoogle Scholar
  6. 6.
    Draget, K. I., O. Smidsrod, and G. Skjåk-Bræk (2005) Alginate from algae. pp. 1–30. In: A. Steinbuchel and S. K. Rhee (eds.). Polysaccharides and polyamides in the food industry. Properties, production, and patents. Wiley-VCH, Weinheim, Germany.Google Scholar
  7. 7.
    Wang, L., R. M. Shelton, P. R. Cooper, M. Lawson, J. T. Triffitt, and J. E. Barralet (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24: 3475–3481.CrossRefGoogle Scholar
  8. 8.
    Serp, D., E. Cantana, C. Heinzen, U. Von Stockar, and I. W. Marison (2000) Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol. Bioeng. 70: 41–53.CrossRefGoogle Scholar
  9. 9.
    Gacesa, P. (1987) Alginate-modifying enzymes: A proposed unified mechanism of action for the lyases and epimerases. FEBS Lett. 212: 199–202.CrossRefGoogle Scholar
  10. 10.
    Michaud, P., A. Da Costa, B. Courtois, and J. Courtois (2003) Polysaccharide lyases: Recent developments as biotechnological tools. Crit. Rev. Biotechnol. 23: 233–266.CrossRefGoogle Scholar
  11. 11.
    Sutherland, I. W. (1995) Polysaccharide lyases. FEMS Microbiol. Rev. 16: 323–347.CrossRefGoogle Scholar
  12. 12.
    Courtois, J. (2009) Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology. Curr. Opin. Microbiol. 12: 261–273.CrossRefGoogle Scholar
  13. 13.
    Iwamoto, M., M. Kurachi, T. Nakashima, D. Kim, K. Yamaguch, T. Oda, Y. Iwamoto, and T. Muramatsu (2005) Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett. 579: 4423–4429.CrossRefGoogle Scholar
  14. 14.
    Kawada, A., N. Hiura, S. Tajima, and H. Takahara (1999) Alginate oligosaccharides stimulate VEGF-mediated growth and migration of human endothelial cells. Arch. Dermatol. Res. 291: 542–547.CrossRefGoogle Scholar
  15. 15.
    Alkawash, M. A., J. S. Soothill, and N. L. Schiller (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114: 131–138.CrossRefGoogle Scholar
  16. 16.
    Haug, A., B. Larsen, and O. Smidsrot (1966) A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem. Scand. 20: 183–190.CrossRefGoogle Scholar
  17. 17.
    Haug, A., S. Myklestad, B. Larsen, and O. Smidsrot (1967) Correlation between chemical structure and physical properties of alginates. Acta Chem. Scand. 21: 768–778.CrossRefGoogle Scholar
  18. 18.
    Nandini, V. V., K. V. Venkatesh, and K. C. Nair (2008) Alginate impressions: A practical perspective. J. Conserv. Dent. 11: 37–41.CrossRefGoogle Scholar
  19. 19.
    Chavagnat, F., C. Duez, M. Guinand, P. Potin, T. Barbeyron, B. Henrissat, J. Wallach, and J. M. Ghuysen (1996) Cloning, sequencing and overexpression in Escherichia coli of the alginate lyase-encoding aly gene of Pseudomonas alginovora: Identification of three classes of alginate lyases. Biochem. J. 319: 575–583.Google Scholar
  20. 20.
    Ertesvåg, H., F. Erlien, G. Skjåk-Bræk, B. H. A. Rehm, and S. Valla (1998) Biochemical properties and substrate specificities of a recombinantly produced Azotobacter vinelandii alginate lyase. J. Bacteriol. 180: 3779–3784.Google Scholar
  21. 21.
    Han, F., Q. -H. Gong, K. Song, J. -B. Li, and W. -G. Yu (2004) Cloning, sequence analysis and expression of gene alyVI encoding alginate lyase from marine bacterium Vibrio sp. QY101. DNA Seq. 15: 344–350.Google Scholar
  22. 22.
    Kawamoto, H., A. Horibe, Y. Miki, T. Kimura, K. Tanaka, T. Nakagawa, M. Kawamukai, and H. Matsuda (2006) Cloning and sequencing analysis of alginate lyase genes from the marine bacterium Vibrio sp.O2. Mar. Biotechnol. 8: 481–490.CrossRefGoogle Scholar
  23. 23.
    Kobayashi, T., K. Uchimura, M. Miyazaki, Y. Nogi, and K. Horikoshi (2009) A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 13: 121–129.CrossRefGoogle Scholar
  24. 24.
    Suzuki, H., K. Suzuki, A. Inoue, and T. Ojima (2006) A novel oligoalginate lyase from abalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner. Carbohydr. Res. 341: 1809–1819.CrossRefGoogle Scholar
  25. 25.
    Yoon, H. -J., W. Hashimoto, O. Miyake, M. Okamoto, B. Mikami, and K. Murata (2000) Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp.A1 alginate lyase. Protein Expres. Purif. 19: 84–90.CrossRefGoogle Scholar
  26. 26.
    Seiderer, L. J., R. C. Newell, and P. A. Cook (1982) Quantitative significance of style enzymes from two marine mussels (Choromytilus meridionalis Krauss and Perna perna Linnaeus) in relation to diet. Mar. Biol. Lett. 3: 257–271.Google Scholar
  27. 27.
    Gimmestad, M., H. Sletta, H. Ertesvåg, K. Bakkevig, S. Jain, S.-J. Suh, G. Skjåk-Bræk, T. E. Ellingsen, D. E. Ohman, and S. Valla (2003) The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J. Bacteriol. 185: 3515–3523.CrossRefGoogle Scholar
  28. 28.
    Lloret, L., R. Barreto, R. León, S. Moreno, J. Mart’Inez-Salazar, G. Esp’In, and G. Sober’on-Ch’avez (2006) Genetic analysis of the transcriptional arrangement of Azotobacter vinelandii alginate biosynthetic genes: Identification of two independent promoters. Mol. Microbiol. 21: 449–457.CrossRefGoogle Scholar
  29. 29.
    Russell, N. J. and P. Gacesa (1988) Chemistry and biology of the alginate of mucoid strains of Pseudomonas aeruginosa in cystic fibrosis. Mol. Asp. Med. 10: 1–91.CrossRefGoogle Scholar
  30. 30.
    Boyd, A. and A. M. Chakrabarty (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60: 2355–2359.Google Scholar
  31. 31.
    Gimmestad, M., H. Ertesvåg, T. M. B. Heggeset, O. Aarstad, B. I. G. Svanem, and S. Valla (2009) Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. J. Bacteriol. 191: 4845–4853.CrossRefGoogle Scholar
  32. 32.
    Zhang, Z., G. Yu, H. Guan, X. Zhao, Y. Du, and X. Jiang (2004) Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibrio sp. 510. Carbohydr. Res. 399: 1475–1481.CrossRefGoogle Scholar
  33. 33.
    Takase, R., A. Ochiai, B. Mikami, W. Hashimoto, and K. Murata (2010) Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp.A1. Biochim. Biophys. Acta 1804: 1925–1936.Google Scholar
  34. 34.
    Hashimoto, W., J. He, Y. Wada, H. Nankai, B. Mikami, and K. Murata (2005) Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: Alginate-binding flagellin on the cell surface. Biochem. 44: 13783–13794.CrossRefGoogle Scholar
  35. 35.
    Momma, K., M. Okamoto, Y. Mishima, S. Mori, W. Hashimoto, and K. Murata (2000) A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. J. Bacteriol. 182: 3998–4004.CrossRefGoogle Scholar
  36. 36.
    Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat (2008) The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucl. acids Res. 37: 233–238.CrossRefGoogle Scholar
  37. 37.
    Garron, M. -L. and M. Cygler (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiol. 20: 1547–1573.CrossRefGoogle Scholar
  38. 38.
    Jedrzejas, M. J. (2000) Structural and functional comparison of polysaccharide-degrading enzymes. Crit. Rev. Biochem. Mol. Biol. 35: 221–251.CrossRefGoogle Scholar
  39. 39.
    Yamamoto, S., T. Sahara, D. Sato, K. Kawasaki, S. Ohgiya, A. Inoue, and T. Ojima (2008) Catalytically important amino-acid residues of abalone alginate lyase HdAly assessed by sitedirected mutagenesis. Enzym. Microb. Technol. 43: 396–402.CrossRefGoogle Scholar
  40. 40.
    Hashimoto, W., O. Miyake, A. Ochia, and K. Murata (2005) Molecular identification of Sphingomonas sp. A1 alginate Lyase (A1-IV) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution. J. Biosci. Bioeng. 99: 48–54.CrossRefGoogle Scholar
  41. 41.
    Ogura, K., M. Yamasaki, B. Mikami, W. Hashimoto, and K. Murata (2008) Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1. J. Mol. Biol. 380: 373–385.CrossRefGoogle Scholar
  42. 42.
    Yamasaki, M., K. Ogura, W. Hashimoto, B. Mikami, and K. Murata (2005) A structural basis for depolymerization of alginate by polysaccharide lyase family-7. J. Mol. Biol. 352: 11–21.CrossRefGoogle Scholar
  43. 43.
    Hashimoto, W., O. Miyake, K. Momma, S. Kawai, and K. Murata (2000) Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J. Bacteriol. 182: 4572–4577.CrossRefGoogle Scholar
  44. 44.
    Miyake, O., W. Hashimoto, and K. Murata (2003) An exotype alginate lyase in Sphingomonas sp. A1: Overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV). Protein Expres. Purif. 29: 33–41.CrossRefGoogle Scholar
  45. 45.
    Ochiai, A., W. Hashimoto, and K. Murata (2006) A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: Molecular identification of Atu 3025 as an exotype family PL-15 alginate lyase. Res. Microbiol. 157: 642–649.CrossRefGoogle Scholar
  46. 46.
    Yoon, H. J., B. Mikami, W. Hashimoto, and K. Murata (1999) Crystal structure of alginate lyase A1-III from Sphingomonas species A1 at 1.78 A resolution. J. Mol. Biol. 290: 505–514.CrossRefGoogle Scholar
  47. 47.
    Osawa, T., Y. Matsubara, T. Muramatsu, M. Kimura, and Y. Kakuta (2005) Crystal structure of the alginate (poly-α-L-guluronate) lyase from Corynebacterium sp. at 1.2 å resolution. J. Mol. Biol. 345: 1111–1118.CrossRefGoogle Scholar
  48. 48.
    Ochiai, A., M. Yamasaki, B. Mikami, W. Hashimoto, and K. Murata (2006) Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15. Acta Cryst. 62: 486–488.Google Scholar
  49. 49.
    Ochiai, A., T. Itoh, B. Mikami, W. Hashimoto, and K. Murata (2010) Structural determinants responsible for substrate recognition and mode of action in family 11 polysaccharide lyases. J. Biol. Chem. 284: 10181–10189.CrossRefGoogle Scholar
  50. 50.
    Hu, X., X. Jiang, and H. -M. Hwang (2006) Purification and characterization of an alginate lyase from marine bacterium Vibrio sp. mutant strain 510-64. Curr. Microbiol. 53: 135–140.CrossRefGoogle Scholar
  51. 51.
    Kim, D. E., E. Y. Lee, and H. S. Kim (2009) Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar. Biotechnol. 11: 10–16.CrossRefGoogle Scholar
  52. 52.
    Sawabe, T., M. Ohtsuka, and Y. Ezura (1997) Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4. Carbohydr. Res. 304: 69–76.CrossRefGoogle Scholar
  53. 53.
    Yamasaki, M., S. Moriwaki, O. Miyake, W. Hashomoto, K. Murata, and B. Mikami (2004) Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7. J. Biol. Chem. 279: 31863–31872.CrossRefGoogle Scholar
  54. 54.
    Iwamoto, M., R. Araki, K. Iriyama, T. Oda, H. Fukuda, S. Hayashida, and T. Muramatsu (2001) Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain No. 272 and its action on saturated oligomeric substrates. Biosci. Biotechnol. Biochem. 65: 133–142.CrossRefGoogle Scholar
  55. 55.
    Ochiai, A., M. Yamasaki, B. Mikami, W. Hashimoto, and K. Murata (2010) Crystal structure of exotype alginate lyase Atu3025 from Agrobacterium tumefaciens. J. Biol. Chem. 285: 24519–24528.CrossRefGoogle Scholar
  56. 56.
    Park, H. H., N. Kam, E. Y. Lee, and H. S. Kim (2011) Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3. Mar. Biotechnol. DOI: 10.1007/s10126-011-9402-7Google Scholar
  57. 57.
    Gacesa, P. (1992) Enzymatic degradation of alginates. Int. J. Biochem. 24: 545–552.CrossRefGoogle Scholar
  58. 58.
    Yoon, H. -J., W. Hashimoto, O. Miyake, M. Okamoto, K. Murata, and B. Mikami (2001) Crystal structure of alginate lyase A1-III complexed with trisaccharide product at 2.0 Å resolution. J. Mol. Biol. 307: 9–16.CrossRefGoogle Scholar
  59. 59.
    Wang, Y., F. Han, B. Hu, J. Li, and W. Yu (2006) In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr. Res. 26: 597–603.CrossRefGoogle Scholar
  60. 60.
    Cao, L., L. Xie, X. Xue, H. Tan, Y. Liu, and S. Zhou (2007) Purification and characterization of alginate lyase from Streptomyces species strain A5 isolated from Banana rhizosphere. J. Agric. Food Chem. 55: 5113–5117.CrossRefGoogle Scholar
  61. 61.
    Hien, N. Q., N. Nagasawa, L. X. Tham, F. Yoshii, V. H. Dang, H. Mitomo, K. Makuuchi, and T. Kume (2000) Growth-promotion of plants with depolymerized alginates by irradiation. Radiat. Phys. Chem. 59: 97–101.CrossRefGoogle Scholar
  62. 62.
    Iwasaki, K. and Y. Matsubara (2000) Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci. Biotechnol. Biochem. 64: 1067–1070.CrossRefGoogle Scholar
  63. 63.
    Mollah, M. Z. I., A. Mubarak, M. A. Khan, A. Ruhul, and R. A. Khan (2009) Effect of gamma irradiated sodium alginate on red amaranth (Amaranthus cruentus L.) as growth promoter. Radiat. Phys. Chem. 78: 61–64.CrossRefGoogle Scholar
  64. 64.
    Yonemoto, Y., H. Tanaka, T. Yamashita, N. Kitabatake, Y. Ishida, A. Kimura, and K. Murata (1993) Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase. J. Ferment. Bioeng. 75: 68–70.CrossRefGoogle Scholar
  65. 65.
    Shin, J. W., S. H. Choi, D. E. Kim, H. S. Kim, J. W. Lee, I. S. Lee, and E. Y. Lee (2011) Preparation of alginate oligosaccharides by using magnetic nanoparticle-immobilized alginate lyase from a marine bacterium, Streptomyces sp. ALG-5. Biopro. Biosys. Eng. 34: 113–119.CrossRefGoogle Scholar
  66. 66.
    Yamamoto, Y., M. Kurachi, K. Yamaguchi, and T. Oda (2007) Stimulation of multiple cytokine production in mice by alginate oligosaccharides following intraperitoneal administration. Carbohydr. Res. 342: 1133–1137.CrossRefGoogle Scholar
  67. 67.
    Kurachi, M., T. Nakashima, C. Miyajima, Y. Iwamoto, T. Muramatsu, K. Yamaguchi, and T. Oda (2005) Comparison of the activities of various alginates to induce TNF-alpha secretion in RAW264.7 cells. J. Infect. Chemother. 11: 199–203.CrossRefGoogle Scholar
  68. 68.
    Cotton, L. A., R. J. Graham, and R. J. Lee (2009) The role of alginate in P. aeruginosa PAO1 biofilm structural resistance to gentamicin and ciorofloxacin. J. Exp. Microbiol. Immunol. 13: 58–62.Google Scholar
  69. 69.
    Ramsey, D. M. and D. J. Wozniak (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol. Microbiol. 56: 309–322.CrossRefGoogle Scholar
  70. 70.
    Beer, L. L., E. S. Boyd, J. W. Peters, and M. C. Posewitz (2009) Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 20: 264–271.CrossRefGoogle Scholar
  71. 71.
    Chisti, Y. (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26: 126–131.CrossRefGoogle Scholar
  72. 72.
    Vasudevan, P. T. and M. Briggs (2008) Biodiesel production-current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 35: 421–430.CrossRefGoogle Scholar
  73. 73.
    Ryu, M. and E. Y. Lee (2011) Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp. MJ-3. J. Ind. Eng. Chem. accepted.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Food Science and BiotechnologyKyungsung UniversityBusanKorea
  2. 2.Department of BiotechnologyInha UniversityIncheonKorea
  3. 3.Department of Chemical EngineeringKyung Hee UniversityYonginKorea

Personalised recommendations