Biotechnology and Bioprocess Engineering

, Volume 17, Issue 1, pp 67–75

An organic solvent-tolerant alkaline lipase from Streptomyces sp. CS268 and its application in biodiesel production

  • Poonam Mander
  • Seung Sik Cho
  • Jaya Ram Simkhada
  • Yun Hee Choi
  • Da Jeong Park
  • Jung Wan Ha
  • Jin Cheol Yoo
Research Paper

Abstract

In an effort to identify a microbial lipase that can catalyze transesterification reactions used in biodiesel production, an organic solvent-tolerant lipase was purified from Streptomyces sp. CS268. The molecular weight of the purified lipase was estimated to be 37.5 kDa by SDS-PAGE. The lipase showed highest activity at a temperature of 30°C and pH 8.0 while it was stable in the pH range 4.0 ∼ 9.0 and at temperatures ≤ 50°C. It showed the highest hydrolytic activity towards medium-length acyl chain p-nitrophenyl decanoate with Km and Vmax values of 0.59 mM and 319.5 mmol/mg/min, respectively. Also, the lipase showed non-position specificity for triolein hydrolysis. The purified lipase catalyzed transesterification reaction of soybean oil with methanol, suggesting that it can be a potential enzymatic catalyst for biodiesel production.

Keywords

microbial lipase organic solvent-tolerant Streptomyces biodiesel production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. 1.
    Demirbas, A. (2008) Biodiesel: A realistic fuel alternative for diesel engines. Springer Publishing Company, London, UK.Google Scholar
  2. 2.
    Hasan, F., A. A Shah, and A. Hameed (2006) Industrial applications of microbial lipases. Enz. Microb. Technol. 39: 235–251.CrossRefGoogle Scholar
  3. 3.
    Antczak, M. S., A. Kubiak, T. Antczak, and S. Bielecki (2009) Enzymatic biodiesel synthesis-key factors affecting efficiency of the process. Renew. Energ. 34: 1185–1194.CrossRefGoogle Scholar
  4. 4.
    Kilbanov, A. M. (2001) Improving enzymes by using them in organic solvent. Nature 409: 241–246.CrossRefGoogle Scholar
  5. 5.
    Ji, Q., S. Xiao, B. He, and X. Liu (2010) Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J. Mol. Catal. B: Enzym. 66: 264–269.CrossRefGoogle Scholar
  6. 6.
    Doukyu, N. and H. Ogino (2010) Organic solvent-tolerant enzymes. Biochem. Eng. J. 48: 270–282.CrossRefGoogle Scholar
  7. 7.
    Sohng, J. K., T. Yamaguchi, C. N. Seong, K. S. Baik, S. C. Park, H. J. Lee, S. Y. Jang, J. R. Simkhada, and J. C. Yoo (2008) Production, isolation and biological activity of nargenicin from Nocardia sp. CS682. Arch. Pharm. Res. 3: 1339–1345.CrossRefGoogle Scholar
  8. 8.
    Bradford, M. M. (1996) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  9. 9.
    Winkler, U. K. and M. Stuckmann (1979) Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138: 663–670.Google Scholar
  10. 10.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 280–285.CrossRefGoogle Scholar
  11. 11.
    Lineweaver, M. H. and D. Burk (1934) The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658–666.CrossRefGoogle Scholar
  12. 12.
    Yang, K. S., J. H. Sohn, and H. K. Kim (2009) Catalytic properties of lipase from Photobacterium Lipolyticum for biodiesel production containing a high methanol concentration. J. Biosci. Bioeng. 107: 599–604.CrossRefGoogle Scholar
  13. 13.
    Sommer, P., C. Bormann, and F. Gotz (1997) Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl. Environ. Microbiol. 63: 3553–3560.Google Scholar
  14. 14.
    Abramic, M., I. Lescic, T. Korica, L. Vitale, W. Saenger, and J. Pigac (1999) Purification and properties of extracellular lipase from Streptomyces rimosus. Enz. Microb. Technol. 25: 522–529.CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., K. Meng, Y. Wang, and H. Luo (2008) A novel proteolysis-resistant lipase from keratinolytic Streptomyces fradiae var.k11. Enz. Microb. Technol. 42: 346–352.CrossRefGoogle Scholar
  16. 16.
    Cote, A. and F. Shareck (2008) Cloning, purification and characterization of two lipases from Streptomyces coelicolor A3(2). Enz. Microb. Technol. 42: 381–388.CrossRefGoogle Scholar
  17. 17.
    Gupta, R., N. Gupta, and P. Rathi (2004) Bacterial lilpases: An overview of production, purification, and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763–781.CrossRefGoogle Scholar
  18. 18.
    Sulong, M., R. N. Abdul Rahman, A. B. Salleh, and M. Barsi (2006) A novel solvent tolerant lipase from Bacillus sphaericus 205y: Extracellular expression of a novel OST-lipase gene. Protein Expres. Pur. 49: 190–195.CrossRefGoogle Scholar
  19. 19.
    Yoo, H. Y., J. R. Simkhada, S. S. Cho, D. H. Park, S. W. Kim, C. N. Seong, and J. C. Yoo (2011) A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour. Technol. 102: 6104–6111.CrossRefGoogle Scholar
  20. 20.
    Dandavate, V., J. Jinjala, H. Keharia, and D. Madamwar (2009) Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour. Technol. 100: 3374–3381.CrossRefGoogle Scholar
  21. 21.
    Lee, D. W., H. W. Kim, K. W. Lee, B. C. Kim, E. A. Choe, H. S. Lee, D. S. Kim, and Y. R. Pyun (2001) Purification and characterization of two distinct thermostable lipases from the gram-positive thermophilic bacterium Bacillus thermoleovorans ID-1. Enz. Microb. Technol. 29: 363–371.CrossRefGoogle Scholar
  22. 22.
    Ogino, H., S. Nakagawa, K. Shinya, T. Muto, M. Fujimura, M. Yasuda, and H. Ishikawa (2000) Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89: 451–457.CrossRefGoogle Scholar
  23. 23.
    Lescic, I., B. Vukelic, M. M. Elenkov, W. Saenger, and M. Abramic (2001) Substrate specificity and effects of water-miscible solvents on the activity and stability of extracellular lipase from Streptomyces rimosus. Enz. Microb. Technol. 29: 548–553.CrossRefGoogle Scholar
  24. 24.
    Masomian, M., R. Rahman, A. B. Salleh, and M. Basri (2010) A unique thermostable and organic solvent tolerant lipase from newly isolated Aneurinibacillus thermoaerophilus strain HZ: Physical factor studies. World J. Microbiol. Biotechnol. 26: 1693–1701.CrossRefGoogle Scholar
  25. 25.
    Cho, S. S., D. J. Park, J. R. Simkhada, J. H. Hong, J. K. Song, O. H. Lee, and J. C. Yoo (2011) A neutral lipase applicable in biodiesel production from a newly isolated Streptomyces sp. CS326. Bioproc. Biosyst. Eng. DOI 10.1007/s00449-001-0598-8.Google Scholar
  26. 26.
    Karadzic, I., A. Masui, L. I. Zivkovic, and N. Fujiwara (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J. Biosci. Bioeng. 102: 82–89.CrossRefGoogle Scholar
  27. 27.
    Peng, R., L. Jin, and D. Wei (2010) Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2. Appl. Biochem. Biotechnol. 162: 733–743.CrossRefGoogle Scholar
  28. 28.
    Bajaj, A., P. Lohan, P. N. Jha, and R. Mehrotra (2010) Biodiesel production through lipase catalyzed transesterification: An overview. J. Mol. Catal. B: Enzym. 62: 9–14.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Poonam Mander
    • 1
  • Seung Sik Cho
    • 1
  • Jaya Ram Simkhada
    • 1
  • Yun Hee Choi
    • 1
  • Da Jeong Park
    • 1
  • Jung Wan Ha
    • 1
  • Jin Cheol Yoo
    • 1
  1. 1.Department of Pharmacy, College of PharmacyChosun UniversityGwangjuKorea

Personalised recommendations