Biotechnology and Bioprocess Engineering

, Volume 17, Issue 1, pp 84–92

Bioconversion composition of Ssanghwa-tang fermented by Lactobacillus fermentum

Research Paper


Ssanghwa-tang is a medicinal formula that is widely prescribed in Korea to decrease fatigue after an illness. Fermented herbal medicines might be made more efficacious than conventional herbal medicines by increasing the absorption and bioavailability of the active compounds. In this study, Ssanghwa-tang was fermented to produce bioconversion compositions using Lactobacillus fermentum, and six peaks were decreased, four peaks were increased and one peak newly appeared in the HPLC-DAD chromatogram. The structures of the newly-appearing compound (1) and increased (2–5) compounds were identified as follows using NMR and MS: liquiritigenin (1), nodakenetin (2), cinnamyl alcohol (3), decursinol (4), and benzoic acid (5). The decreased compounds were identified to be paeoniflorin (6), liquiritin (7), nodakenin (8), cinnamaldehyde (9), decursin (10), and decursinol angelate (11) using HPLC-DAD analysis with authentic compounds. The high performance liquid chromatography method was used to quantify the eleven constituents in Ssanghwa-tang and fermented Ssanghwa-tang. All calibration curves of the standard compounds exhibited excellent linearity with a R2 > 0.9940.


ssanghwa-tang fermentation liquiritigenin nodakenetin cinnamyl alcohol decursinol benzoic acid paeoniflorin liquiritin nodakenin cinnamaldehyde decursin decursinol angelate regression equation R2 Lactobacillus fermentum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Won, J. B., J. Y. Ma, Y. R. Um, and C. J. Ma (2010) Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD. Pharmcogn. Mag. 6: 111–115.CrossRefGoogle Scholar
  2. 2.
    Park, W. K. and S. D. Park (1995) Effects of Ssanghwa-Tang on the antifatigue action and brain levels of norepinephrine, serotonin, 5-hydroxyindole-acetic acid and dopamine. The J. Jeahan Oriental Med. Acad. 1: 130–145.Google Scholar
  3. 3.
    Han, D. S., H. K. Lee, and H. J. Cho (1983) Analgesic and anti-convulsionary effects of Ssanghwa-Tang. Kor. J. Pharmacog. 14: 60–63.Google Scholar
  4. 4.
    Jung, J. C. and D. K. Park (1986) Studies on CNS-depression and anti-inflammatory action of Ssangwhatang. J. Kor. Pharm. Sci. 16: 24–30.Google Scholar
  5. 5.
    Hyun, D. H., J. K. Kim, D. Y. Choi, C. H. Kim, and W. H. Park (1997) Inhibition of growth of the established 3-methyl-DABinduced mammary cancer in mice and lung endothelial cells by Gamissangwhatang. Kor. J. Oriental Med. Pathol. 11: 108–112.Google Scholar
  6. 6.
    Kim, J. K. (2005) Smooth muscle relaxation by the herbal medicine Ssanghwatang associated with nitric oxide synthase activation and nitric oxide production. Ph.D. Thesis. University of Wonkwang, Iksan-si, Jeollabuk-do, Korea.Google Scholar
  7. 7.
    Shim, K. S., J. H. Lee, and J. Y. Ma (2010) Effect of Ssangwhatang fermented by Lactobacillus fermentum on osteoclast differentiation and osteoporosis of ovariectomized rats. Kor. J. Ori. Med. 16: 149–155.Google Scholar
  8. 8.
    Shim, K. S., J. H. Lee, C. J. Ma, Y. H. Lee, S. U. Choi, and J. Y. Ma (2010) Inhibitory effect of Ssangwha-tang on bone loss in ovariectomized rats. Animal cells and systems 14: 283–289.CrossRefGoogle Scholar
  9. 9.
    Cho, T. Y., C. K. Shim, M. H. Lee, and S. K. Kim (1987) Effects of blended Chinese traditional medicine, SsangWhaTang, on hepatic clearance of sulfobromophthalein in rats. J. Kor. Pharm. Sci. 17: 89–93.Google Scholar
  10. 10.
    Chien, H. L., H. Y. Huang, and C. C. Chou (2006) Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 772–778.CrossRefGoogle Scholar
  11. 11.
    Trinh, H. T., S. J. Han, S. W. Kim, Y. C. Lee, and D. H. Kim (2007) Bifidus fermentation increase hypolipidemic and hypoglycemic effects of red ginseng. J. Microbiol. Biotechn. 17: 1127–1133.Google Scholar
  12. 12.
    Okabe, Y., T. Shimazu, and H. Tanimoto (2011) Higher bioavailability of isoflavones after a single ingestion of aglyconerich fermented soybeans compared with glucoside-rich nonfermented soybeans in Japanese postmenopausal women. J. Sci. Food Agric. 91: 658–663.CrossRefGoogle Scholar
  13. 13.
    Wei, Q. K., T. R. Chen, and J. T. Chen (2007) Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk. Int. J. Food Microbiol. 117: 120–124.CrossRefGoogle Scholar
  14. 14.
    Choi, J. H., J. N. Choi, S. Y. Lee, S. J. Lee, K. H. Kim, and Y. K. Kim (2010) Inhibitory activity of diacylglycerol acyltransferase by glabrol isolated from the roots of licorice. Arch. Pharm. Res. 33: 237–242.CrossRefGoogle Scholar
  15. 15.
    Lee, S. H., D. S. Shin, J. S. Kim, K. B. Oh, and S. S. Kang (2003) Antibacterial Coumarins from Angelica gigas Roots. Arch. Pharm. Res. 26: 449–452.CrossRefGoogle Scholar
  16. 16.
    Pouchert, C. and J. Behnke (1993) The Aldrich Library of 13C and 1H FT NMR spectra. p. 392.1st ed., Aldrich Chemical Co., St. Louis, USA.Google Scholar
  17. 17.
    Lee, J. H., H. B. Bang, S. Y. Han, and J. G. Jun (2007) An efficient synthesis of (+)-decursinol from umbelliferone. Tetrahedron Lett. 48: 2889–2892.CrossRefGoogle Scholar
  18. 18.
    Pouchert, C. and J. Behnke (1993) The Aldrich Library of 13C and 1H FT NMR spectra. p. 1063. 1st ed., Aldrich Chemical Co., St. Louis, USA.Google Scholar
  19. 19.
    Kim, Y. W., Y. M. Kim, Y. M. Yang, H. Y. Kay, W. D. Kim, J. W. Lee, S. J. Hwang, and S. G. Kim (2011) Inhibition of LXRalpha dependent steatosis and oxidative injury by liquiritigenin, a licorice flavonoid, as mediated with Nrf2 activation. Antioxid. Redox. Signal 14: 733–745.CrossRefGoogle Scholar
  20. 20.
    Liu, R. T., L. B. Zou, J. Y. Fu, and Q. J. Lu (2010) Promotion of rat brain-derived progenitor cell neurogenesis by liquiritigenin treatment: underlying mechanisms. Neurosci. Lett. 481: 139–143.CrossRefGoogle Scholar
  21. 21.
    Lee, Y. S., S. H. Kim, S. H. Jung, J. K. Kim, C. H. Pan, and S. S. Lim (2010) Aldose reductase inhibitory compounds from Glycyrrhiza uralensis. Biol. Pharm. Bull. 33: 917–921.CrossRefGoogle Scholar
  22. 22.
    Kim, Y. W., R. J. Zhao, S. J. Park, J. R. Lee, I. J. Cho, C. H. Yang, S. G. Kim, and S. C. Kim (2008) Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br. J. Pharmacol. 154: 165–173.CrossRefGoogle Scholar
  23. 23.
    Mersereau, J. E., N. Levy, R. E. Staub, S. Baggett, T. Zogovic, S. Chow, W. A. Ricke, M. Tagliaferri, I. Cohen, L. F. Bjeldanes, and D. C. Leitman (2008) Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Mol. Cell Endocrinol. 283: 49–57.CrossRefGoogle Scholar
  24. 24.
    Shin, Y. W., E. A. Bae, B. Lee, S. H. Lee, J. A. Kim, Y. S. Kim, and D. H. Kim (2007) In vitro and in vivo antiallergic effects of Glycyrrhiza glabra and its components. Planta Med. 73: 257–261.CrossRefGoogle Scholar
  25. 25.
    Lee, M. H., Y. P. Lin, F. L. Hsu, G. R. Zhan, and K. Y. Yen (2006) Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochem. 67: 1262–1270.CrossRefGoogle Scholar
  26. 26.
    Saeed, M. A. and A. W. Sabir (2008) Irritant and cytotoxic coumarins from Angelica glauca Edgew roots. J. Asian Nat. Prod. Res. 10: 49–58.CrossRefGoogle Scholar
  27. 27.
    Kang, S. Y. and Y. C. Kim (2007) Neuroprotective coumarins from the root of Angelica gigas: Structure-activity relationships. Arch. Pharm. Res. 30: 1368–1373.CrossRefGoogle Scholar
  28. 28.
    Ng, L. T. and S. J. Wu (2009) Antiproliferative activity of Cinnamomum cassia constituents and effects of pifithrin-alpha on their apoptotic signaling pathways in Hep G2 cells. Evid. Based Complement. Alternat. Med. doi:10.1093/ecam/nep220.Google Scholar
  29. 29.
    Chang, K. S., J. H. Tak, S. I. Kim, W. J. Lee, and Y. J. Ahn (2006) Repellency of Cinnamomum cassia bark compounds and cream containing cassia oil to Aedes aegypti (Diptera: Culicidae) under laboratory and indoor conditions. Pest Manag. Sci. 62: 1032–1038.CrossRefGoogle Scholar
  30. 30.
    Lee, H. S. (2002) Inhibitory activity of Cinnamomum cassia bark-derived component against rat lens aldose reductase. J. Pharm. Pharm. Sci. 5: 226–230.Google Scholar
  31. 31.
    Lee, H. S., B. S. Kim, and M. K. Kim (2002) Suppression effect of Cinnamomum cassia bark-derived component on nitric oxide synthase. J. Agric. Food Chem. 50: 7700–7703.CrossRefGoogle Scholar
  32. 32.
    Zucca, P., M. Littarru, A. Rescigno, and E. Sanjust (2009) Cofactor recycling for selective enzymatic biotransformation of cinnamaldehyde to cinnamyl alcohol. Biosci. Biotechnol. Biochem. 73: 1224–1226.CrossRefGoogle Scholar
  33. 33.
    Choi, S. S., K. J. Han, J. K. Lee, H. K. Lee, E. J. Han, D. H. Kim, and H. W. Suh (2003) Antinociceptive mechanisms of orally administered decursinol in the mouse. Life Sci. 73: 471–485.CrossRefGoogle Scholar
  34. 34.
    Yan, J. J., D. H. Kim, Y. S. Moon, J. S. Jung, E. M. Ahn, N. I. Baek, and D. K. Song (2004) Protection against â-amyloid peptide-induced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 28: 25–30.CrossRefGoogle Scholar
  35. 35.
    Son, S. H., M. J. Kim, W. Y. Chung, J. A. Son, Y. S. Kim, Y. C. Kim, S. S. Kang, S. K. Lee, and K. K. Park (2009) Decursin and decursinol inhibit VEGF-induced angiogenesis by blocking the activation of extracellular signal-regulated kinase and c-Jun Nterminal kinase. Cancer Lett. 280: 86–92.CrossRefGoogle Scholar
  36. 36.
    Li, Z., Y. Sun, X. Yan, and F. Meng (2010) Study on QSTR of benzoic acid compounds with MCI. Int. J. Mol. Sci. 11: 1228–1235.CrossRefGoogle Scholar
  37. 37.
    Choi, J. W., K. T. Lee, H. Ka, W. T. Jung, H. J. Jung, and H. J. Park (2001) Constituents of the essential oil of the Cinnamomum cassia stem bark and the biological properties. Arch. Pharm. Res. 24: 418–423.CrossRefGoogle Scholar
  38. 38.
    Ping, G., W. H. Huang, F. Q. Yang, J. Li, and S. P. Li (2010) Pressurized liquid extraction and GC-MS analysis for simultaneous determination of seven components in Cinnamomum cassia and the effect of sample preparation. J. Sep. Sci. 33: 2341–2348.CrossRefGoogle Scholar
  39. 39.
    Wang, R., R. J. Wang, and B. Yang (2011) Comparison of volatile compound composition Of cinnamon (Cinnamomum cassia PRESL) bark prepared by hydrodistillation and headspace solod phase microextraction. J. Food Proc. Eng. 34: 175–185.CrossRefGoogle Scholar
  40. 40.
    Kang, S. Y., K. Y. Lee, S. H. Sung, and Y. C. Kim (2005) Four new neuroprotective dihydropyranocoumarins from Angelica gigas. J. Nat. Prod. 68: 56–59.CrossRefGoogle Scholar
  41. 41.
    Kang, S. Y., K. Y. Lee, S. H. Sung, M. J. Park, and Y. C. Kim (2001) Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: Structure -activity relationships. J. Nat. Prod. 64: 683–685.CrossRefGoogle Scholar
  42. 42.
    Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695–1699.Google Scholar
  43. 43.
    Hasegawa, H. (2004) Proof of the mysterious efficacy of ginseng: basic and clinical trials: Metabolic activation of ginsenoside: Deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci. 95: 153–157.CrossRefGoogle Scholar
  44. 44.
    Hubert, J., M. Berger, F. Nepveu, F. Paul, and J. Dayde (2008) Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem. 109: 709–721.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Herbal Medicine Improvement Research CenterKorea Institute of Oriental MedicineDaejeonKorea

Personalised recommendations