Aminotransferase-catalyzed asymmetric synthesis of benazepril intermediate

  • Bum-Yeol Hwang
  • Minho Cha
  • Hyung-Yeon Park
  • Byung-Gee Kim
Research Paper


Benazepril is a medication used to treat hypertension, congestive heart failure and chronic renal failures. A benazepril intermediate was synthesized through asymmetric synthesis using aromatic aminotransferase from Enterobacter sp. BK2K-1 (AroATEs). Sodium 4-methoxy-4-(2-nitrophenyl)-2-oxobutanoate (1) and (E)-4-(2-nitrophenyl)-2-oxobut-3-enoic acid (2) were tested as amino acceptors for the transamination by AroATEs. The AroATEs showed higher activity towards 1, which could be explained using a docking simulation. Both the substrate and product inhibitions for the reaction of 1 as an amino acceptor and l-glutamate as an amino donor were examined. The product inhibition by α-ketoglutarate was able to be solved by the removal of the product using the glutamate dehydrogenase (GDH) and formate dehydrogenase (FDH) coupling system. Using 50 mM of 1, above 99% conversion (> 99% ee) was achieved using the AroATEs, with the GDH and FDH combined system.


aminotransferase benazepril product inhibition reaction coupling docking simulation 


  1. 1.
    van Beilen, J. B. and Z. Li (2002) Enzyme technology: An overview. Curr. Opin. Biotechnol. 13: 338–344.CrossRefGoogle Scholar
  2. 2.
    Margolin, A. L. (1993) Enzymes in the synthesis of chiral drugs. Enz. Microb. Technol. 15: 266–280.CrossRefGoogle Scholar
  3. 3.
    Bornscheuer, U. T. (2005) Trends and challenges in enzyme technology. Adv. Biochem. Eng. Biotechnol. 100: 181–203.Google Scholar
  4. 4.
    Hou, F. F., X. Zhang, G. H. Zhang, D. Xie, P. Y. Chen, W. R. Zhang, J. P. Jiang, M. Liang, G. B. Wang, Z. R. Liu, and G. W. Geng (2006) Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med. 354: 131–140.CrossRefGoogle Scholar
  5. 5.
    Watthey, J. W., J. L. Stanton, M. Desai, J. E. Babiarz, and B. M. Finn (1985) Synthesis and biological properties of (carboxyalkyl) amino-substituted bicyclic lactam inhibitors of angiotensin converting enzyme. J. Med. Chem. 28: 1511–1516.CrossRefGoogle Scholar
  6. 6.
    Armstrong, J. D., K. K. Eng, J. L. Keller, R. M. Purick, F. W. Hartner Jr., W. B. Choi, D. Askin, and R. P. Volante (1994) An efficient asymmetric synthesis of (R)-3-amino-2,3,4,5-tetrahydro-1H-[1]benzazepin-2-one. Tetrahedron Lett. 35: 3239–3243.CrossRefGoogle Scholar
  7. 7.
    Shieh, W. C., J. A. Carlson, and G. M. Zaunium (1997) Asymmetric synthesis of N-substituted alpha-aminobenzlactam via crystallization-Induced asymmetric transformation of covalent diastereomer. J. Org. Chem. 62: 8271–8272.CrossRefGoogle Scholar
  8. 8.
    Yu, L. T., J. L. Huang, C. Y. Chang, and T. K. Yang (2006) Formal synthesis of the ACE inhibitor benazepril × HCl via an asymmetric aza-Michael reaction. Molecules 11: 641–648.CrossRefGoogle Scholar
  9. 9.
    Chang, C. Y. and T. K. Yang (2003) Asymmetric synthesis of ACE inhibitor Benazepril HCl via a bioreductive reaction. Tetrahedron: Asymm. 14: 2239–2245.CrossRefGoogle Scholar
  10. 10.
    Cho, B. K., J. H. Seo, T. W. Kang, and B. G. Kim (2003) Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase. Biotechnol. Bioeng. 83: 226–234.CrossRefGoogle Scholar
  11. 11.
    Cho, B. K., H. Y. Park, J. H. Seo, K. Kinnera, B. S. Lee, and B. G. Kim (2004) Enzymatic resolution for the preparation of enantiomerically enriched D-beta-heterocyclic alanine derivatives using Escherichia coli aromatic L-amino acid transaminase. Biotechnol. Bioeng. 88: 512–519.CrossRefGoogle Scholar
  12. 12.
    Baker, D. and A. Sali (2001) Protein structure prediction and structural genomics. Science 294: 93–96.CrossRefGoogle Scholar
  13. 13.
    Marti-Renom, M. A., A. C. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29: 291–325.CrossRefGoogle Scholar
  14. 14.
    Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26: 283–291.CrossRefGoogle Scholar
  15. 15.
    Hwang, B. Y., B. K. Cho, H. Yun, K. Koteshwar, and B. G. Kim (2005) Revisit of aminotransferase in the genomic era and its application to biocatalysis. J. Mol. Cat. B: Enzym. 37: 47–55.CrossRefGoogle Scholar
  16. 16.
    Koszelewski, D., K. Tauber, K. Faber, and W. Kroutil (2010) omega-Transaminases for the synthesis of non-racemic alphachiral primary amine. Trends Biotechnol. 28: 324–332.CrossRefGoogle Scholar
  17. 17.
    Kazlauskas, R. J. (2000) Molecular modeling and biocatalysis: Explanations, predictions, limitations, and opportunities. Curr. Opin. Chem. Biol. 4: 81–88.CrossRefGoogle Scholar
  18. 18.
    Hwang, B. Y., H. B. Lee, Y. G. Kim, and B. G. Kim (2006) Lipase-catalyzed kinetic resolutions of racemic β- and γ-thiolactones. J. Mol. Cat. B: Enzym. 41: 125–129CrossRefGoogle Scholar
  19. 19.
    Jeong, S., B. Y. Hwang, J. Kim, and B. G. Kim (2000) Lipase-catalyzed reaction in the packed-bed reactor with continuous extraction column to overcome a product inhibition. J. Mol. Cat. B: Enzym. 10: 597–604.CrossRefGoogle Scholar
  20. 20.
    Hwang, J. Y., J. Park, J. H. Seo, M. Cha, B. K. Cho, J. Kim, and B. G. Kim (2009) Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway. Biotechnol. Bioeng. 102: 1323–1329.CrossRefGoogle Scholar
  21. 21.
    Hong, E. Y., M. Cha, H. Yun, and B. G. Kim (2010) Asymmetric synthesis of L-tert-leucine and L-3-hydroxyadamantylglycine using branched chain aminotransferase. J. Mol. Cat. B: Enzym. 66: 228–233.CrossRefGoogle Scholar
  22. 22.
    Yun, H. B., K. Cho, and B. G. Kim (2004) Kinetic resolution of (R, S)-sec-butylamine using omega-transaminase from Vibrio fluvialis JS17 under reduced pressure. Biotechnol. Bioeng. 87: 772–778.CrossRefGoogle Scholar
  23. 23.
    Yun, H. and B. G. Kim (2008) Asymmetric synthesis of (S)-alpha-methylbenzylamine by recombinant Escherichia coli coexpressing omega-transaminase and acetolactate synthase. Biosci. Biotechnol. Biochem. 72: 3030–3033.CrossRefGoogle Scholar
  24. 24.
    Kragl, U., D. Vasic-Racki, and C. Wandrey (1996) Continuous production of L-tert-leucine in series of two enzyme membrane reactors. Modelling and computer simulation. Bioproc. Eng. 14: 291–297.Google Scholar
  25. 25.
    Taylor, P. P., D. P. Pantaleone, R. F. Senkpeil, and I. G. Fotheringham (1998) Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol. 16: 412–418.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bum-Yeol Hwang
    • 1
    • 2
  • Minho Cha
    • 1
  • Hyung-Yeon Park
    • 1
  • Byung-Gee Kim
    • 1
  1. 1.School of Chemical Engineering and Institute for Molecular Biology and GeneticsSeoul National UniversitySeoulKorea
  2. 2.Department of Chemical Engineering, QB3 InstituteUniversity of California-BerkeleyBerkeleyUSA

Personalised recommendations