A new microtiter plate-based screening method for microorganisms producing Alpha-amylase inhibitors

Research Paper

Abstract

Alpha-amylase inhibitors are widely used by the pharmaceutical and agricultural industries, such as the treatment of diabetes and obesity and insect controller. Here, we developed a colorimetric method to screen for α-amylase inhibitor producing strains or mutants with higher α-amylase inhibitor productivity. This method relies on absorbance changes at 402 nm that are due to the inhibition of α-amylase catalyzed hydrolysis of 2-Chloro-4-nitrophenyl-4-O-β-D-galactopyranosyl-maltoside by α-amylase inhibitors. The assay can be performed on a microtiter plate, making it simple and convenient. Using this method, α-amylase inhibitor producing strains and mutants with higher α-amylase inhibitor productivity can be rapidly screened. One strain, ZJB-08196, with the highest α-amylase inhibition was isolated and identified as Actinoplanes utahensis, and one mutant with higher acarbose production was obtained by screening 3,000 variants using this method.

Keywords

α-amylase inhibitors human salivary amylase 2-Chloro-4-nitrophenyl-4-O-β-D-galactopyrano-syl-maltoside diabetes mellitus acarbose 

References

  1. 1.
    Rossetti, L., A. Giaccari, and R. A. DeFronzo (1990) Glucose toxicity. Diabetes Care 13: 610–630.CrossRefGoogle Scholar
  2. 2.
    Yang, W., J. Lu, J. Weng, W. Jia, L. Ji, J. Xiao, Z. Shan, J. Liu, H. Tian, and Q. Ji (2010) Prevalence of diabetes among men and women in China. New Engl. J. Med. 362: 1090–1101.CrossRefGoogle Scholar
  3. 3.
    Apostolidis, E. and C. M. Lee (2010) In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated alpha-glucosidase and alpha-amylase inhibition. J. Food Sci. 75: 97–102.CrossRefGoogle Scholar
  4. 4.
    Krentz, A. J. and C. J. Bailey (2005) Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs 65: 385–411.CrossRefGoogle Scholar
  5. 5.
    Jung, B., M. Matzke, and J. Stoltefus (1996) Chemistry and structure activity relationship of glucosidase inhibitors. pp. 411–467. In: J. Kuhlman and W. Puls (eds.). Handbook of Experimental Pharmacology. Springer, Berlin, Germany.Google Scholar
  6. 6.
    Wehmeier, U. F. and W. Piepersberg (2004) Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl. Microbiol. Biotechnol. 63: 613–625.CrossRefGoogle Scholar
  7. 7.
    Prashanth, D., R. Padmaja, and D. S. Samiulla (2001) Effect of certain plant extracts on alpha-amylase activity. Fitoterapia. 72: 179–181.CrossRefGoogle Scholar
  8. 8.
    Martins, J. C., M. Enassar, R. Willem, J. M. Wieruzeski, G. Lippens, and S. J. Wodak (2001) Solution structure of the main alpha-amylase inhibitor from amaranth seeds. Eur. J. Biochem. 268: 2379–2389.CrossRefGoogle Scholar
  9. 9.
    Kotowaroo, M. I., M. F. Mahomoodally, A. Gurib-Fakim, and A. H. Subratty (2006) Screening of traditional antidiabetic medicinal plants of Mauritius for possible alpha-amylase inhibitory effects in vitro. Phytother Res. 20: 228–231.CrossRefGoogle Scholar
  10. 10.
    Wang, Y. F., Z. W. Yang, and X. L. Wei (2010) Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and owers of Camellia sinensis obtained by different extraction methods. Int. J. Biol. Macromol. 47: 534–539.CrossRefGoogle Scholar
  11. 11.
    Hansawasdi, C., J. Kawabata, and T. Kasai (2000) Alpha-amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) tea. Biosci. Biotechnol. Biochem. 64: 1041–1043.CrossRefGoogle Scholar
  12. 12.
    Choi, H. J., N. J. Kim, and D. H. Kim (2000) Inhibitory effects of crude drugs on alpha-glucosidase. Arch. Pharm.Res. 23: 261–266.CrossRefGoogle Scholar
  13. 13.
    Mueller, L. (1989) Chemistry, biochemistry and therapeutic potential of microbial α-glucosidase inhibitors. pp. 109–113. In: A. L. Demain, G. A. Somkuti, J. C. Hunter-Cevera, and H. W. Rossmoore (eds.). Novel Microbial Products for Medicine and Agriculture. Elsevier Science Ltd., New York, US.Google Scholar
  14. 14.
    Frommer, W., W. Puls, and D. Schaefer (1975) Glycoside-hydrolase enzyme inhibitors. US Patent 3,876,766.Google Scholar
  15. 15.
    Imada, C. (2005) Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie. Van. Leeuwenhoek. 87: 59–63.CrossRefGoogle Scholar
  16. 16.
    Miller, G. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.CrossRefGoogle Scholar
  17. 17.
    Hamdan, I. and F. Afifi (2010) Capillary electrophoresis as a screening tool for alpha amylase inhibitors in plant extracts. Saudi. Pharm. J. 18: 91–95.CrossRefGoogle Scholar
  18. 18.
    Bates, F., D. French, and R. Rundle (1943) Amylose and amylopectin content of starches determined by their iodine complex formation. J. Am. Chem.Soc. 65: 142–148.CrossRefGoogle Scholar
  19. 19.
    Kandra, L. and G. Gyemant (2000) Examination of the active sites of human salivary alpha-amylase (HSA). Carbohyd. Res. 329: 579–585.CrossRefGoogle Scholar
  20. 20.
    Liu, Z. Q., J. F. Zhang, Y. G. Zheng, and Y. C. Shen (2008) Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low energy ion beam implantation. J. Appl. Microbiol. 104: 861–872.CrossRefGoogle Scholar
  21. 21.
    Williams, S. T., M. E. Sharpe, and J. G. Holt (1989) Bergey’s manual of systematic bacteriology. pp. 2299–2302. In: S. T. Williams, M. E. Sharpe, and J. G. Holt (eds.). Actinomycetes. Williams and Wilkins, Baltimore, US.Google Scholar
  22. 22.
    Long, P. (1994) Identification of some industrially important Actinoplanes species. J. Ind. Microbiol. Biotechnol. 13: 300–310.Google Scholar
  23. 23.
    Frommer, W., B. J., U. Keup, L. Mller, W. Puls, and D. Schmidt (1977) Amino sugar derivatives. US Patent 4,062,950.Google Scholar
  24. 24.
    Walker, J., J. Winder, and S. Kellam (1993) High-throughput microtiter plate-based chromogenic assays for glycosidase inhibitors. Appl. Biochem. Biotechnol. 38: 141–146.CrossRefGoogle Scholar
  25. 25.
    Truscheit, E., W. Frommer, B. Junge, L. Mueller, D. Schmidt, and W. Wingender (1981) Chemistry and biochemistry of microbial α-Glucosidase inhibitors. Angew. Chem. Int. Ed. 20: 744–761.CrossRefGoogle Scholar
  26. 26.
    Choi, B. and C. Shin (2003) Reduced formation of byproduct component C in acarbose fermentation by Actinoplanes sp. CKD485-16. Biotechnol. Prog. 19: 1677–1682.CrossRefGoogle Scholar
  27. 27.
    Wang, Y. J., Y. G. Zheng, Y. P. Xue, Y. S. Wang, and Y. C. Shen (2011) Analysis and determination of anti-diabetes drug acarbose and its structural analogs. Curr. Pharm. Anal. 7: 12–20.CrossRefGoogle Scholar
  28. 28.
    Chen, X. L., Y. G. Zheng, and Y. C. Shen (2005) A new method for production of valienamine with microbial degradation of acarbose. Biotechnol. Prog. 21: 1002–1003.CrossRefGoogle Scholar
  29. 29.
    Zheng, Y. G., Y. P. Xue, and Y. C. Shen (2006) Production of valienamine by a newly isolated strain: Stenotrophomonas maltrophilia. Enz. Microb. Technol. 39: 1060–1065.CrossRefGoogle Scholar
  30. 30.
    Li, W., H. Zheng, J. Bukuru, and N. De Kimpe (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol. 92: 1–21.CrossRefGoogle Scholar
  31. 31.
    Bhandari, M., N. Jong-Anurakkun, G. Hong, and J. Kawabata (2008) α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 106: 247–252.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of BioengineeringZhejiang University of TechnologyZhejiangChina

Personalised recommendations