Advertisement

Oxidation and removal of industrial textile dyes by a novel peroxidase extracted from post-harvest lentil (Lens culinaris L.) stubble

  • Nazaret Hidalgo
  • Giulia Mangiameli
  • Teresa Manzano
  • Galina G. Zhadan
  • John F. Kennedy
  • Valery L. Shnyrov
  • Manuel G. RoigEmail author
Research Paper

Abstract

The degradation and removal of a series of dyes used in the textile industry for polyester/wool (PES/WO) blends and present in effluents, such as Green, Ash-Grey, Black, Navy Blue, Red and Yellow Domalan, and Orange and Red Bemacid, by catalytic action, in the presence of H2O2, of extracts of a novel peroxidase from postharvest lentil stubble was investigated. The extracts of this peroxidase (LSP) were effective in degrading these lastgeneration textile dyes, especially Green Domalan, Orange Bemacid, Grey and Black Domalan. A sensitivity study was carried out for Green Domalan biodegradation to determine the effects of process parameters such as pH, H2O2, enzyme and dye concentrations, contact and centrifugation times, and temperature. Standard ecotoxicity studies performed with Vibrio fischeri revealed that the dye solutions treated with peroxidase and H2O2 were less ecotoxic than the untreated ones.

Keywords

azo anthraquinone textile dyes peroxidase oxidation decolorization ecotoxicity test 

References

  1. 1.
    Fu, Y. and T. Viraraghavan (2001) Fungal decolourization of dye wastewaters: A review. Biores. Technol. 79: 251–262.CrossRefGoogle Scholar
  2. 2.
    Akhtar, S., A. A. Khan, and Q. Husain (2005) Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolourization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere 60: 291–301.CrossRefGoogle Scholar
  3. 3.
    Spadaro, J. T., M. H. Gold, and V. Rengananthan (1992) Degradation of azo dyes by lignin-degrading fungus Phanaerochaete chrysospotium. Appl. Environ. Microbiol. 58: 2397–2401.Google Scholar
  4. 4.
    Shaffiqu, T. S., J. J. Roy, R. Aswathi, and T. E. Abraham (2002) Degradation of textile dyes mediated by plant peroxidases. Appl. Biochem. Biotechnol. 102–103: 315–326.CrossRefGoogle Scholar
  5. 5.
    Gottlieb, A., C. Shaw, A. Smith, A. Wheatley, and S. Forsythe (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J. Biotecnol. 101: 49–56.CrossRefGoogle Scholar
  6. 6.
    Robinson, T., G. McMullan, R. Marchant, and P. Nigam (2001) Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247–255.CrossRefGoogle Scholar
  7. 7.
    Mohan, S. V. and J. Karthikeyan (1999) Removal of colour from textile dye effluents by adsorption process. pp. 272–289. In: Goel, P. K. (ed.). Advances in Wastewater Treatment Technologies. Technoscience Publications, Jaipur, India.Google Scholar
  8. 8.
    Karam, J. and J. A. Nicell (1997) Potential application of enzymes in waste treatment. J. Chem. Tech. Biotechnol. 69: 141–153.CrossRefGoogle Scholar
  9. 9.
    Mohan, S. V., K. K. Prasad, N. C. Rao, and P. N. Sarma (2005) Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58: 1097–1105.CrossRefGoogle Scholar
  10. 10.
    Chivukula, M., J. T. Spadaro, and V. Renganathan (1995) Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochem. 34: 7765–7772.CrossRefGoogle Scholar
  11. 11.
    Bhunia, A., S. Durani, and P. Wangikar (2002) Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol. Bioeng. 72: 562–567.CrossRefGoogle Scholar
  12. 12.
    Mohorcic, M., S. Teodorovic, V. Golob, and J. Fiedrich (2006) Fungal and enzymatic decolourisation of artificial textile dye baths. Chemosphere 63: 1709–1717.CrossRefGoogle Scholar
  13. 13.
    Zamorano, L. S., M. G. Roig, E. Villar, and V. L. Shnyrov (2007) The versatile peroxidases. Curr. Topics in Biochem. Res. 9: 1–26.Google Scholar
  14. 14.
    Chen, J., S. M. Yu, and P. Zuo (2006) Horseradish peroxidase immobilized on aluminum pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res. 40: 283–290.CrossRefGoogle Scholar
  15. 15.
    Kim, G. Y., K. B. Lee, S. H. Cho, J. Shim, and S. H. Moon (2005) Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. J. Hazard. Mater. 126: 183–188.CrossRefGoogle Scholar
  16. 16.
    Ulson de Souza, S. M. A. G., E. Forgiarini, and A. A. Ulson de Souza (2007) Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). J. Hazard. Mater. 147: 1073–1078.CrossRefGoogle Scholar
  17. 17.
    Fairbanks, G., T. L. Steck, and D. F. H. Wallach (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochem. 10: 2606–2617.CrossRefGoogle Scholar
  18. 18.
    Merril, C. R., D. Goldman, S. A. Sedman, and M. H. Ebert (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211: 1437–1438.CrossRefGoogle Scholar
  19. 19.
    Bradford, M. M. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  20. 20.
    Maciel, H. P. F., C. M. C. P. Gouvêa, M. Toyama, M. Smolka, S. Marangoni, and G. M. Pastore (2007) Extraction, purification and biochemical characterization of a peroxidase from Copaifera langsdorffii leaves. Quim. Nova 30: 1067–1071.CrossRefGoogle Scholar
  21. 21.
    Zamorano, L. S., D. G. Pina, F. Gavilanes, M. G. Roig, I. Y. Sakharov, A. P. Jadan, R. B. van Huystee, E. Villar, and V. L. Shnyrov (2004) Two-state irreversible thermal denaturation of anionic peanut (Arachis hypogaea L.) peroxidase. Thermochim. Acta 417: 67–73.CrossRefGoogle Scholar
  22. 22.
    Wilkinson, S. R., D. J. Meyer, and J. M. Nelly (2000) Biochemical characterization of a trypanosome enzyme with glutathionedependent peroxidase activity. Biochem. J. 352: 755–761.CrossRefGoogle Scholar
  23. 23.
    Zamorano, L. S., D. G. Pina, J. B. Arellano, S. A. Bursakov, A. P. Zhadan, J. J. Calvete, L. Sanz, P. R. Nielsen, E. Villar, O. Gavel, M. G. Roig, L. Watanabe, I. Polikarpov, and V. L. Shnyrov (2008) Thermodynamic characterization of the palm tree Roystonea regia peroxidase stability. Biochimie 90: 1737–1749.CrossRefGoogle Scholar
  24. 24.
    Aruldoss, J. A. and T. Viraraghavan (1998) Toxicity testing of refinery wastewater using Microtox. Bull. Environ. Contam. Tox icol. 60: 456–463.CrossRefGoogle Scholar
  25. 25.
    Repetto, G., A. Jos, M. J. Hazen, M. L. Molero, A. Peso, M. Salguero, P. Castillo, M. C. Rodriguez-Vicente, and M. Repetto (2001) A test battery for the ecotoxicological evaluation of pentachlorophenol. Toxicol. In vitro 15: 503–509.CrossRefGoogle Scholar
  26. 26.
    Johnson, T. B. (2005) Microtox acute toxicity test. Environ. Microbiol. 2: 69–105.Google Scholar
  27. 27.
    Hernando, M. D., S. De Vettori, M. J. Martinez Bueno, and A. R. Fernández-Alba (2007) Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere 68: 724–730.CrossRefGoogle Scholar
  28. 28.
    ISO 11348-3, Water quality — Determination of inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminiscent bacteria test) — Part 3: Method using freeze-dried bacteria. 2007.Google Scholar
  29. 29.
    Onorati, F. and M. Mecozzi (2004) Effects of two diluents in the Microtox toxicity bioassay with marine sediments. Chemosphere 54: 679–687.CrossRefGoogle Scholar
  30. 30.
    Klibanov, A. M., T. M. Tu, and K. P. Scott (1983) Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Sci. 221: 259–261.CrossRefGoogle Scholar
  31. 31.
    Nicell, J. A., J. K. Bewtra, N. Buswas, and E. Taylor (1993) Reactor development for peroxidase catalyzed polymerization and precipitation of phenols from wastewater. Water Res. 27: 1629–1639.CrossRefGoogle Scholar
  32. 32.
    Cooper, V. A. and J. A. Nicell (1996) Removal of phenols from a foundry wastewater using horseradish peroxidase. Water Res. 30: 954–964.CrossRefGoogle Scholar
  33. 33.
    Veitch, N. C. (2004) Horseradish peroxidase: A modern view of a classic enzyme. Phytochem. 65: 249–259.CrossRefGoogle Scholar
  34. 34.
    Roig, M. G., J. F. Bello, S. Rodríguez, J. M. Cachaza, and J. F. Kennedy (1994) Human placental alkaline phosphatase covalently immobilized on a cross-flow microfiltration polyvinylidene difluoride membrane. Part I. Physicochemical effectors. J. Mol. Catal. 93: 85–104.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nazaret Hidalgo
    • 1
  • Giulia Mangiameli
    • 1
  • Teresa Manzano
    • 1
  • Galina G. Zhadan
    • 2
  • John F. Kennedy
    • 3
  • Valery L. Shnyrov
    • 2
  • Manuel G. Roig
    • 1
    Email author
  1. 1.Centro de Investigación y Desarrollo Tecnológico del Agua (CIDTA)Universidad de SalamancaSalamancaSpain
  2. 2.Departamento de Bioquímica y Biología MolecularUniversidad de SalamancaSalamancaSpain
  3. 3.Research Laboratory for the Chemistry of Bioactive Carbohydrates and Proteins, School of ChemistryUniversity of BirminghamBirminghamUK

Personalised recommendations