Biotechnology and Bioprocess Engineering

, Volume 16, Issue 3, pp 482–487 | Cite as

Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus

  • Qiang Fei
  • Ho Nam ChangEmail author
  • Longan Shang
  • Jin-dal-rae Choi
Research Paper


Volatile fatty acids (VFAs), acetic acid, acetates, and ethanol were used as carbon sources for the production of microbial lipids using Cryptococcus albidus in batch cultures. C. albidus utilized organic acids less than glucose in the production of lipids, resulting in a lipid yield coefficient on VFAs of 0.125 g/g. In a two-stage batch culture, the lipid content increased to 43.8% (w/w) when VFAs were used as the sole carbon source in the second stage, which was two times higher than that of the batch culture. Furthermore, a 192 h, two-stage fed-batch cultivation of C. albidus produced a dry cell weight, lipid concentration, and lipid content of 26.4 g/L, 14.5 g/L, and 55.1% (w/w), respectively. The fed-batch culture model used in this study featured pure VFA solutions, with intermittent feeding, under oxygen-enriched air supply conditions. This study investigated several alternative carbon sources to reduce the cost of microbial lipids production and proved the feasibility of using VFAs as the carbon source for the provision of a high lipid content and productivity.


microbial lipids production Cryptococcus albidus low-cost carbon source two-stage cultivation oxygen-enriched air supply biodiesel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xue, F. Y., J. X. Miao, X. Zhang, H. Luo, and T. W. Tan (2008) Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour. Technol. 99: 5923–5927.CrossRefGoogle Scholar
  2. 2.
    Meng, X., J. M. Yang, X. Xu, L. Zhang, Q. J. Nie, and M. Xian (2009) Review: Biodiesel production from oleaginous microorganisms. Renew. Ener. 34: 1–5.CrossRefGoogle Scholar
  3. 3.
    Ratledge, C. (1991) Microorganisms for lipids. Acta Biotechnol. 11: 429–438.CrossRefGoogle Scholar
  4. 4.
    Hansson, L. and M. Dostfilek (1986) Influence of cultivation conditions on lipid production by Cryptococcus albidus. Appl. Microbiol. Biotechnol. 24: 12–18.Google Scholar
  5. 5.
    Liang, Y. N., Y. Cui, J. Trushenski, and J. W. Blackburn (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour. Technol. 101: 7581–7586.CrossRefGoogle Scholar
  6. 6.
    Chang, H. N., N. J. Kim, J. W. Kang, C. M. Jeong, JDR Choi, F. Qiang, B. J. Kim, S. H. Kwon, S. Y. Lee, and J. B. Kim (2011) Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess Biosyst Eng DOI 10.1007/s00449-010-0485-8.Google Scholar
  7. 7.
    Li, Y. H., Z. B. Zhao, and F. W. Bai (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fedbatch culture. Enz. Microb. Technol. 41:312–317.CrossRefGoogle Scholar
  8. 8.
    Fei, Q., H. N. Chang, L. A. Shang, J. D. R. Choi, N. J. Kim, and J. W. Kang (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour. Technol. 102: 2695–2701.CrossRefGoogle Scholar
  9. 9.
    Lim, S. J., B. J. Kim, C. M. Jeong, J. D. R. Choi, Y. H. Ahn, and H. N. Chang (2008) Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour. Technol. 99: 7866–7874.CrossRefGoogle Scholar
  10. 10.
    Chang, H. N., N. J. Kim, J. W. Kang, and C. M. Jeong (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol. Bioproc. Eng. 15: 1–10.CrossRefGoogle Scholar
  11. 11.
    Chang, H. N., M. I. Kim, Q. Fei, J. D. R. Choi, L. A. Shang, N. J. Kim, J. A. Kim, and H. G. Park (2010) Economic evaluation of Off-gas recycle pressure swing adsorption (PSA) on industrial scale poly(3-hydroxybutyrate) fermentation. Biotechnol. Bioproc. Eng. 15: 905–910.CrossRefGoogle Scholar
  12. 12.
    Li, H., N. J. Kim, M. Jiang, J. W. Kang, and H. N. Chang (2009) Simultaneous saccharification and fermentation of lignocellulose residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour. Technol. 100: 3245–3251.CrossRefGoogle Scholar
  13. 13.
    Li, X. F., H. Xu, and Q. Y. Wu (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 98: 764–771.CrossRefGoogle Scholar
  14. 14.
    Ratledge, C. (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86: 807–815.CrossRefGoogle Scholar
  15. 15.
    Meesters, P., G. Huijberts, and G. Eggink (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biotechnol. 45: 575–579.CrossRefGoogle Scholar
  16. 16.
    Kavadia, A., M. Komaitis, I. Chevalot, F. Blanchard, I. Marc, and G. Aggelis (2001) Lipid and gamma-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J. Am. Oil Chem. Soc. 78: 341–346.CrossRefGoogle Scholar
  17. 17.
    Steen, E. J., Y. S. Kang, G. Bokinsky, Z. H. Hu, A. Schirmer, A. McClure, S. B. D. Cardayre, and J. D. Keasling (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: 559–562.CrossRefGoogle Scholar
  18. 18.
    Shang, L. A., P. Y. Tian, N. J. Kim, H. N. Chang, and M. S. Hahm (2009) Effects of oxygen supply modes on the production of human growth hormone in different scale bioreactors. Chem. Eng. Technol. 32: 600–605.CrossRefGoogle Scholar
  19. 19.
    Youn, J. K., L. A. Shang, M. I. Kim, M. J. Chang, H. N. Chang, M. S. Hahm, S. K. Rhee, and H. A. Kang (2010) Enhanced production of human serum albumin by fed-batch culture of Hansenula polymorpha with high purity oxygen. J. Microbiol. Biotechnol. 20: 1534–1538.CrossRefGoogle Scholar
  20. 20.
    Pan, J. G., M. Y. Kwak, and J. S. Rhee (1986) High density cell culture of Rhodotorula glutinis using oxygen-enriched air. Biotechnol. Lett. 8: 715–718.CrossRefGoogle Scholar
  21. 21.
    Rodrigues, G. and C. Pais (2000) The influence of acetic and other weak carboxylic acids on growth and cellular death of the yeast Yarrowia lipolytica. Food Technol. Biotechnol. 38: 27–32.Google Scholar
  22. 22.
    Yahara, G. A., M. A. Javier, M. J. M. Tulio, G. R. Javier, and A. U. M. Guadalupe (2007) Modeling of yeast Brettanomyces bruxellensis growth at different acetic acid concentrations under aerobic and anaerobic conditions. Bioproc. Biosyst. Eng. 30: 389–395.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Qiang Fei
    • 1
  • Ho Nam Chang
    • 1
    • 2
    Email author
  • Longan Shang
    • 3
  • Jin-dal-rae Choi
    • 1
  1. 1.Biochemical Engineering Lab, Department of Chemical and Biomolecule EngineeringKAISTDaejeonKorea
  2. 2.Eews BiotechKAISTDaejeonKorea
  3. 3.College of Biological and Chemical Engineering, Ningbo Institute of TechnologyZhejiang UniversityNingboChina

Personalised recommendations