Biotechnology and Bioprocess Engineering

, Volume 16, Issue 2, pp 205–215

In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli

  • Hailin Meng
  • Yong Wang
  • Qiang Hua
  • Siliang Zhang
  • Xiaoning Wang
Research Paper


The biosynthesis of terpenoids in heterologous hosts has become increasingly popular. Isopentenyl diphosphate (IPP) is the central precursor of all isoprenoids, and the synthesis can proceed via two separate pathways in different organisms: The 1-deoxylulose 5-phosphate (DXP) pathway and the mevalonate (MVA) pathway. In this study, an in silico comparison was made between the maximum theoretical IPP yields and the thermodynamic properties of the DXP and MVA pathways using different hosts and carbon sources. We found that Escherichia coli and its DXP pathway have the most potential for IPP production. Consequently, codon usage redesign, and combinations of chromosomal engineering and various strains were considered for optimizing taxadiene biosynthesis through the endogenic DXP pathway. A high production strain yielding 876 ± 60 mg/L taxadiene, with an overall volumetric productivity of 8.9 mg/(L × h), was successfully obtained by combining the chromosomal engineered upstream DXP pathway and the downstream taxadiene biosynthesis pathway. This is the highest yield thus far reported for taxadiene production in a heterologous host. These results indicate that genetic manipulation of the DXP pathway has great potential to be used for production of terpenoids, and that chromosomal engineering is a powerful tool for heterologous biosynthesis of natural products.


taxadiene isopentenyl pyrophosphate heterologous biosynthesis in silico analysis pathway engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wani, M. C., H. L. Taylor, M. E. Wall, P. Coggon, and A. T. McPhail (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93: 2325–2327.CrossRefGoogle Scholar
  2. 2.
    Horwitz, S. B. (1994) How to make taxol from scratch. Nature 367: 593–594.CrossRefGoogle Scholar
  3. 3.
    Frense, D. (2007) Taxanes: Perspectives for biotechnological production. Appl. Microbiol. Biotechnol. 73: 1233–1240.CrossRefGoogle Scholar
  4. 4.
    Roberts, S. C. (2007) Production and engineering of terpenoids in plant cell culture. Nature Chem. Biol. 3: 387–395.CrossRefGoogle Scholar
  5. 5.
    Nicolaou, K. C., Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, and K. Paulvannan (1994) Total synthesis of taxol. Nature 367: 630–634.CrossRefGoogle Scholar
  6. 6.
    Kirby, J. and J. D. Keasling (2009) Biosynthesis of plant isoprenoids: Perspectives for microbial engineering. Annu. Rev. Plant Biol. 60: 335–355.CrossRefGoogle Scholar
  7. 7.
    Ro, D. K., E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Chang, S. T. Withers, Y. Shiba, R. Sarpong, and J. D. Keasling (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943.CrossRefGoogle Scholar
  8. 8.
    Chang, M. C. and J. D. Keasling (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2: 674–681.CrossRefGoogle Scholar
  9. 9.
    Martin, V. J., D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796–802.CrossRefGoogle Scholar
  10. 10.
    Tsuruta, H., C. J. Paddon, D. Eng, J. R. Lenihan, T. Horning, L. C. Anthony, R. Regentin, J. D. Keasling, N. S. Renninger, and J. D. Newman (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One. 4: e4489.CrossRefGoogle Scholar
  11. 11.
    Morrone, D., L. Lowry, M. K. Determan, D. M. Hershey, M. Xu, and R. J. Peters (2010) Increasing diterpene yield with a modular metabolic engineering system in E. coli: Comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl. Microbiol. Biotechnol. 85: 1893–1906.CrossRefGoogle Scholar
  12. 12.
    Huang, Q., C. A. Roessner, R. Croteau, and A. I. Scott (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem. 9: 2237–2242.CrossRefGoogle Scholar
  13. 13.
    Besumbes, O., S. Sauret-Gueto, M. A. Phillips, S. Imperial, M. Rodriguez-Concepcion, and A. Boronat (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol. Bioeng. 88: 168–175.CrossRefGoogle Scholar
  14. 14.
    Dejong, J. M., Y. Liu, A. P. Bollon, R. M. Long, S. Jennewein, D. Williams, and R. B. Croteau (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng. 93: 212–224.CrossRefGoogle Scholar
  15. 15.
    Engels, B., P. Dahm, and S. Jennewein (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 10: 201–206.CrossRefGoogle Scholar
  16. 16.
    Yuan, L. Z., P. E. Rouviere, R. A. Larossa, and W. Suh (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab. Eng. 8: 79–90.CrossRefGoogle Scholar
  17. 17.
    Jin, Y. S. and G. Stephanopoulos (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab. Eng. 9: 337–347.CrossRefGoogle Scholar
  18. 18.
    Alper, H., K. Miyaoku, and G. Stephanopoulos (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23: 612–616.CrossRefGoogle Scholar
  19. 19.
    Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbelt, V. Hatzimanikatis, and B. O. Palsson (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3: 121.CrossRefGoogle Scholar
  20. 20.
    Herrgard, M. J., N. Swainston, P. Dobson, W. B. Dunn, K. Y. Arga, M. Arvas, N. Bluthgen, S. Borger, R. Costenoble, M. Heinemann, M. Hucka, N. Le Novere, P. Li, W. Liebermeister, M. L. Mo, A. P. Oliveira, D. Petranovic, S. Pettifer, E. Simeonidis, K. Smallbone, I. Spasic, D. Weichart, R. Brent, D. S. Broomhead, H. V. Westerhoff, B. Kirdar, M. Penttila, E. Klipp, B. O. Palsson, U. Sauer, S. G. Oliver, P. Mendes, J. Nielsen, and D. B. Kell (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26: 1155–1160.CrossRefGoogle Scholar
  21. 21.
    Oh, Y. K., B. O. Palsson, S. M. Park, C. H. Schilling, and R. Mahadevan (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J. Biol. Chem. 282: 28791–28799.CrossRefGoogle Scholar
  22. 22.
    Becker, S. A., A. M. Feist, M. L. Mo, G. Hannum, B. O. Palsson, and M. J. Herrgard (2007) Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox. Nat. Protoc. 2: 727–738.CrossRefGoogle Scholar
  23. 23.
    Varma, A. and B. O. Palsson (1993) Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J. Theor. Biol. 165: 477–502.CrossRefGoogle Scholar
  24. 24.
    Varmar, A. and B. O. Palsson (1993) Metabolic capabilities of Escherichia-coli: 2. Optimal-growth patterns. J. Theor. Biol. 165: 503–522.CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Lergier, J., L. J. Broadbelt, and V. Hatzimanikatis (2006) Analysis of the maximum theoretical yield for the synthesis of erythromycin precursors in Escherichia coli. Biotechnol. Bioeng. 95: 638–644.CrossRefGoogle Scholar
  26. 26.
    Yu, D., H. M. Ellis, E. C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA. 97: 5978–5983.CrossRefGoogle Scholar
  27. 27.
    Datsenko, K. A. and B. L. Wanner (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97: 6640–6645.CrossRefGoogle Scholar
  28. 28.
    Wang, Y. and B. A. Pfeifer (2008) 6-deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli. Metab. Eng. 10: 33–38.CrossRefGoogle Scholar
  29. 29.
    Cunningham, F. X. Jr., Z. Sun, D. Chamovitz, J. Hirschberg, and E. Gantt (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell. 6: 1107–1121.CrossRefGoogle Scholar
  30. 30.
    Sambrook, J. and D. W. Russell (2001) Molecular cloning: A laboratory manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  31. 31.
    Lau, J., C. Tran, P. Licari, and J. Galazzo (2004) Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli. J. Biotechnol. 110: 95–103.CrossRefGoogle Scholar
  32. 32.
    Pfeifer, B., Z. Hu, P. Licari, and C. Khosla (2002) Process and metabolic strategies for improved production of Escherichia coliderived 6-deoxyerythronolide B. Appl. Env. Microbiol. 68: 3287–3292.CrossRefGoogle Scholar
  33. 33.
    Jones, K. L., S. W. Kim, and J. D. Keasling (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2: 328–338.CrossRefGoogle Scholar
  34. 34.
    Edwards, J. S. and B. O. Palsson (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1: 1.CrossRefGoogle Scholar
  35. 35.
    Segre, D., D. Vitkup, and G. M. Church (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA. 99: 15112–15117.CrossRefGoogle Scholar
  36. 36.
    Alper, H. and G. Stephanopoulos (2008) Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl. Microbiol. Biotechnol. 78: 801–810.CrossRefGoogle Scholar
  37. 37.
    Park, J. H., K. H. Lee, T. Y. Kim, and S. Y. Lee (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA. 104: 7797–7802.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hailin Meng
    • 1
    • 2
    • 3
  • Yong Wang
    • 2
  • Qiang Hua
    • 3
  • Siliang Zhang
    • 3
  • Xiaoning Wang
    • 1
  1. 1.School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Key Laboratory of Synthetic Biology, Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  3. 3.State Key Laboratory of Bioreactor Engineering, National Engineering Research Center for BiotechnologyEast China University of Science and TechnologyShanghaiChina

Personalised recommendations