Biotechnology and Bioprocess Engineering

, Volume 16, Issue 1, pp 81–88 | Cite as

Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the East Sea of Korea

  • Hong Jun Choi
  • Joo Bin Hong
  • Jeong Joon Park
  • Won-Jae Chi
  • Mu-Chan Kim
  • Yong-Keun Chang
  • Soon-Kwang Hong
Research Paper


The agar degrading bacterial strain GNUM-08124 was isolated from Enteromorpha compressa collected in the East Sea of Korea by using a selective artificial sea water (ASW) agar plate containing agar as the sole carbon source. GNUM-08124 grows to produce a circular, smooth, yellow-colored, and raised colony. Its ability to hydrolyze agar was confirmed by staining the ASW agar plate with Lugol’s solution. In liquid culture, the cell density (A600) increased exponentially and reached a maximum level on the third day of cultivation. The specific agarase activity also increased in proportion to the cell density and reached maximum agarolytic activity on the third day. The 16S rRNA sequence of GNUM-08124 showed a close relationship to Micrococcus luteus (99.65%) and Micrococcus endophyticus (99.15%), which led us to assign it to the genus Micrococcus. Physiological studies indicated that optimal growth conditions were between 30 and 40°C, pH 4 and 7, using media containing between 5 and 10% NaCl (w/v), respectively. The GNUM-08124 strain was a grampositive, urease-positive, and catalase-positive bacterium. It could not hydrolyze gelatin, cellulose, xylan, or starch, but fermented a broader range of substrates, including Dglucose, D-galactose, D-fructose, D-lactose, D-trehalose, D-mannitol, D-melibiose, D-raffinose, D-xylose, methyl-α-D-glucopyranoside, N-acetyl-glucosamine, and xylitol, than those fermented by M. luteus or M. endophyticus, suggesting GNUM-08124 is a novel agar hydrolyzing microorganism belonging to Genus Micrococcus. Micrococcus sp. GNUM-08124 showed the highest agarase activity when it was cultured in ASW-YP medium supplemented with 0.4% glucose, but demonstrated lower activity in rich media (LB or TSB), in spite of superior cell growth, implying that agarase production is tightly regulated in an agar-dependent manner and repressed in rich conditions.


agarase micrococcus agar degradation medium optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xiao, T. F. and S. M. Kim (2010) Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8: 200–218.CrossRefGoogle Scholar
  2. 2.
    Duckworth, M. and W. Yaphe (1971) Structure of agar. I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189–197.CrossRefGoogle Scholar
  3. 3.
    Araki, C. H. (1966) Some recent studies on the polysaccharides of agarophytes. pp. 3–17. In: Young E. G. and J. L. Maclachan (eds.). Proceedings of the International Seaweed Symposium 5. Pergamon Press, London.Google Scholar
  4. 4.
    Araki, C. H. (1937) Acetylation of agar like substance of Gelidium amansii. J. Chem. Soc. 58: 1338–1350.Google Scholar
  5. 5.
    Potin, P., C. Richard, C. Rochas, and B. Kloareg (1993) Purification and characterization of the alpha-agarase from Alteromonas agarlyticus (Cataldi) comb. Nov., strain GJ1B. Eur. J. Biochem. 214: 599–607.CrossRefGoogle Scholar
  6. 6.
    Duckworth, M. and J. R. Turvey (1969) An extracellular agarase from a Cytophaga species. Biochem. J. 113:139–142.Google Scholar
  7. 7.
    Van der Meulen, H. J. and W. Harder (1975) Production and characterization of the agarase of Cytophaga flevensis. Antonie. Van. Leeuwenhoek 41: 431–447.CrossRefGoogle Scholar
  8. 8.
    Groleau, D. and W. Yaphe (1977) Enzymatic hydrolysis of agar: Purification and characterization of beta-neoagarotetraose hydrolase from Pseudomonas atlantica. Can. J. Microbiol. 23: 672–679.CrossRefGoogle Scholar
  9. 9.
    Malmqvist, M. (1978) Purification and characterization of two different agarose degrading enzymes. Biochem. Biophys. Acta 537: 31–43.Google Scholar
  10. 10.
    Morrice, L. M., M. W. McLean, F. B. Williamson, and W. F. Long (1983) Beta-agarases I and II from Pseudomonas atlantica. Purifications and some properties. Eur. J. Biochem. 135: 553–558.CrossRefGoogle Scholar
  11. 11.
    Hamer, G. K., S. S. Bhattacharjee, and W. Yaphe (1977) Analysis of the enzymatic hydrolysis products of agarose by 13C-NMR spectroscopy. Carbohydr. Res. 54: 7–10.CrossRefGoogle Scholar
  12. 12.
    Leon, O., L. Quintana, G. Peruzzo, and J. C. Slebe (1992) Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol. 58: 4060–4063.Google Scholar
  13. 13.
    Wang, J. X., H. N. Mou, X. L. Jiang, and H. S. Guan (2006) Characterization of a novel β-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71:833–839.CrossRefGoogle Scholar
  14. 14.
    Vera, J., R. Alvarez, E. Murano, J. C. Slebe, O. Jand, and O. Leo (1998) Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Envrion. Microbiol. 64: 4378–4383.Google Scholar
  15. 15.
    Buttner, M., I. M. Fearnley, and M. J. Bibb (1987) The agarase gene (dagA) of Streptomyces coelicolor A3(2): Nucleotide sequence and transcriptional analysis. Mol. Gen. Genet. 209: 101–109.CrossRefGoogle Scholar
  16. 16.
    Fu, W., B. Han, D. Duan, W. Liu, and C. Wang (2008) Purification and characterization of agarases from a marine bacterium Vibrio sp. F-6. J. Ind. Microbiol. Biotechnol. 35: 915–922.CrossRefGoogle Scholar
  17. 17.
    Araki, T., M. Hayakawa, L. Zhang, S. Karita, and T. Morishita (1998) Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Mar. Biotechnol. 6: 260–265.Google Scholar
  18. 18.
    Sugano, Y., I. Terada, M. Arita, and M. Noma (1993) Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Envrion. Microbiol. 59: 1549–1554.Google Scholar
  19. 19.
    Hu, Z., B. -K. Lin, Y. Xu, M. Q. Zhong, and G. -M. Liu (2008) Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J. Appl. Microbiol. 106: 181–190.CrossRefGoogle Scholar
  20. 20.
    Kim H. T., S. Lee, D. Lee, H. -S. Kim, W. -G. Bang, K. H. Kim, and I.-G. Choi (2010) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2–40: An exo-type β-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol. 86: 227–234.CrossRefGoogle Scholar
  21. 21.
    Naganuma, T., D. A. Coury, M. Poline-Fuller, A. Gibor, and K. Horikoshi (1993) Characterization of agarolytic Microscilla isolates and their extracellular agarases. Syst. Appl. Microbiol. 16: 183–190CrossRefGoogle Scholar
  22. 22.
    Zhong, Z., A. Toukdarian, D. Helinski, V. Knauf, S. Sykes, J. E. Wilkinson, C. O’Bryne, T. Shea, C. DeLoughery, and R. Caspi (2001) Sequence analysis of a 101-kilobase plasmid required for agar degradation by a Microscilla isolate. Appl. Environ. Microbiol. 67: 5771–5779.CrossRefGoogle Scholar
  23. 23.
    Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.CrossRefGoogle Scholar
  24. 24.
    Hall, T. A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.Google Scholar
  25. 25.
    Yoon, J. H., S. T. Lee, and Y. H. Park (1996) Inter-and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187–194.CrossRefGoogle Scholar
  26. 26.
    Moaledj, K. (1986) Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: Their application to numerical taxonomy. J. Microbiol. Methods 5: 303–310.CrossRefGoogle Scholar
  27. 27.
    Zhao, G. -Z., J. Li, S. Qin, Y. -Q. Zhang, W. -Y. Zhu, C. -L. Jiang, L. -H. Xu, and W. -J. Li (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int. J. Syst. Evol. Microbiol. 59: 2383–2387.CrossRefGoogle Scholar
  28. 28.
    Servin-Gonzalez, L., M. R. Jensen, J. White, and M. Bibb (1994) Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Microbiol. 140: 2555–2565.CrossRefGoogle Scholar
  29. 29.
    Lakshmikanth, M., S. Manohar, J. Patnakar, P. Vaishampayan, Y. Shouche, and J. Lalitha (2006) Optimization of culture conditions for the production of extracellular agarases from newly isolated Pseudomonas aeruginosa AG LSL-11. World J. Microbiol. Biotechnol. 22: 531–537.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hong Jun Choi
    • 2
  • Joo Bin Hong
    • 2
  • Jeong Joon Park
    • 2
  • Won-Jae Chi
    • 1
  • Mu-Chan Kim
    • 3
  • Yong-Keun Chang
    • 4
  • Soon-Kwang Hong
    • 1
  1. 1.Division of Bioscience and BioinformaticsMyongji UniversityYonginKorea
  2. 2.Daewon Foreign Language High SchoolGwangjin-gu, SeoulKorea
  3. 3.Department of Marine Environmental Engineering College of Marine ScienceGyeongsang National UniversityGyeongnamKorea
  4. 4.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations