Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron

Research Paper


Malachite green was detoxified into p-benzyl-N,N-dimethylaniline and N,N-dimethyl-aniline hydrochloride by Penicillium ochrochloron. Degradation metabolites were analyzed by TLC, HPLC, and FTIR and identified by GCMS analysis. Phytotoxicity testing revealed the nontoxic nature of these metabolites. The percentage decolorization of malachite green (50 mg/L) was 93% in czapek dox broth after 14 h with an optimum pH of 7 at 30°C. The induction in the activity of lignin peroxidase after degradation suggested that the degradation of malachite green was peroxidase-mediated. Fungal culture was also found to have detoxified the textile effluent. The values of TDS, TSS, COD, and BOD were reduced in the treated samples compared to the control effluent. The treated effluent was non-toxic to the plants of Triticum aestivum and Ervum lens Linn, and the amount of total chlorophyll was higher in plants with treated effluent when compared to control effluent.


malachite green detoxification Penicillium ochrochloron textile effluent chlorophyll 


  1. 1.
    Bhattacharya, A., S. Mandal, and B. Bhattacharya (2008) Bioaugmentation technology in textile — mill waste water management: A case study. Res. J. Env. sci. 2: 32–39.CrossRefGoogle Scholar
  2. 2.
    O’Neill, C., A. Lopez, S. Esteves, F. Hawkes, D. Hawkes, and S. Wilcox (2000) Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Appl. Microbiol. Biotechnol. 53: 249–254.CrossRefGoogle Scholar
  3. 3.
    Matthews, R. W. (1996) Performance update low pressure wet air oxidation unit BP Chemicals Ltd., Grangemouth, Scotland. AICHE 1996 Spring Meeting, New Orleans, February, 69–83.Google Scholar
  4. 4.
    Karkmaz, M., E. Puzenat, C. Guillard, and J. Herrmann (2004) Photocatalytic degradation of the alimentary azo dye amaranth: Mineralization of the azo group to nitrogen. Appl. Catal. B: Environ. 51: 183–194.CrossRefGoogle Scholar
  5. 5.
    Gregorio, C. (2006) Non-conventional low-cost adsorbents for dye removal: A review. Biores. Technol. 97: 1061–1085.CrossRefGoogle Scholar
  6. 6.
    Asamudo, N., A. Daba, and O. Ezeronye (2005) Bioremediation of textile effluent using Phaenerochaete chrysosporium. Afr. J. Biotechnol. 4: 1548–1553.Google Scholar
  7. 7.
    Correia, V., T. Stephenson, and S. Judd (1994) Characterisation of textile wastewaters: A review. Environ. Technol. 15: 917–929.CrossRefGoogle Scholar
  8. 8.
    Ezeronye, O. and P. Okerentugba (1999) Performance and efficiency of a yeast biofilter for the treatment of a Nigerian fertilizer plant effluent. W. J. Microbiol. Biotechnol. 15: 515–516.CrossRefGoogle Scholar
  9. 9.
    Srivastava, S., R. Sinha, and D. Roya (2004) Toxicological effects of malachite green. Aquatic Toxicol. 66: 319–329.CrossRefGoogle Scholar
  10. 10.
    Foster, F. and L. Woodbury (1936) The use of malachite green as a fish fungicide and antiseptic. Prog. Fish Culturist. 18: 7–9.CrossRefGoogle Scholar
  11. 11.
    Mitrowska, K. and A. Posyniak (2004) Determination of malachite green and its metabolite, leucomalachite green in fish muscle by liquid chromatography. Bull. Vet. Inst. Pul. 48: 173–176.Google Scholar
  12. 12.
    Srivastava, S., N. Singh, A. Srivastava, and R. Sinha (1995) Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustes fossilis. Aquatic Toxicol. 31: 241–247.CrossRefGoogle Scholar
  13. 13.
    Zahn, T. and T. Braunbeck (1995) Cytotoxic effects of sublethal concentrations of malachite green in isolated hepatocytes from rainbow trout (Oncorhynchus mykiss). Toxicol. in Vitro. 9: 729–741.CrossRefGoogle Scholar
  14. 14.
    Franson, M. (1998) Standard methods for the examination of water and waste water. pp. 2–12, 15–17, and 55–57. In: L. S. Clesceri, A. E. Greenberg, and A. D. Eaton (eds.). American Public Health Association, Washington DC.Google Scholar
  15. 15.
    Hatvani, N. and L. Mecs (2001) Production of laccase and manganese peroxidase by Lentinus edodes on malt containing dye product of the brewing process. Proc. Biochem. 37: 491–496.CrossRefGoogle Scholar
  16. 16.
    Shanmugam, V., M. Kumari, and K. D. Yadav (1999) n-propanol as a substrate for assaying the lignin peroxidase activity of Phanerochaete chrysosporium. Ind. J. Biochem. Biophys. 36: 39–43.Google Scholar
  17. 17.
    Zhang, X. and W. Flurkey (1997) Phenoloxidases in Portubella mushrooms. J. Food Sci. 62: 97–100.CrossRefGoogle Scholar
  18. 18.
    Salokhe, M. D. and S. P. Govindwar (1999) Effect of carbon source on biotransformation enzymes in Serratia marcescens. W. J. Microbiol. Biotechnol. 15: 229–232.CrossRefGoogle Scholar
  19. 19.
    Jadhav, J. P. and S. P. Govindwar (2006) Biotransformation of malachite green by Saccharomyces cerevisiae. Yeast 23: 315–323.CrossRefGoogle Scholar
  20. 20.
    Shedbalkar, U., R. Dhanve, and J. Jadhav (2008) Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. J. Haz. Mat. 157: 472–479.CrossRefGoogle Scholar
  21. 21.
    Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15.CrossRefGoogle Scholar
  22. 22.
    Daneshvar, N., M. Ayazloo, A. Khataee, and M. Pourhassan (2007) Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour. Technol. 98: 1176–1182.CrossRefGoogle Scholar
  23. 23.
    Ren S., J. Guo, G. Zeng, and G. Sun (2006) Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl. Microbiol. Biotechnol. 72: 1316–1321.CrossRefGoogle Scholar
  24. 24.
    An, S., S. Min, I. Cha, Y. Choi, Y. Cho, C. Kim, and Y. Lee (2002) Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol. Lett. 24:1037–1040.CrossRefGoogle Scholar
  25. 25.
    Parshetti, G. K., S. D. Kalme, G. D. Saratale, and S. P. Govindwar (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim. Slov. 53: 492–498.Google Scholar
  26. 26.
    Cha, C., D. Doerge, and C. Cerniglia (2001) Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67: 4353–4360.CrossRefGoogle Scholar
  27. 27.
    Papinutti, L., N. Mouso, and F. Forchiassin (2006) Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran — Fomes sclerodermeus. Enz. Microbial. Technol. 39: 848–853.CrossRefGoogle Scholar
  28. 28.
    Papinutti, V. L. and F. Forchiassin (2004) Modification of malachite green by Fomes sclerodermeus and reduction of toxicity to Phanerochaete chrysosporium. FEMS Microbiol. Lett 231: 205–209.CrossRefGoogle Scholar
  29. 29.
    Henderson, A. L., T. C. Schmitt, T. M. Heinze, and C. E. Cerniglia (1997) Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl. Env. Microbiol. 63: 4099–4101.Google Scholar
  30. 30.
    Gomare, S. S., G. K. Parshetti, and S. P. Govindwar (2009) Biodegradation of malachite Green by Brevibacillus laterosporus MTCC 2298. Water Env. Res. 81: 2329–2336.CrossRefGoogle Scholar
  31. 31.
    Albrigo, L. and J. Grosser (1996) Methods for evaluation of spray chemical phytotoxicity to Citrus. Proc. Flo. State Hort.l Soc. 109: 52–57.Google Scholar
  32. 32.
    Kapanen, A. and M. Itavaara (2001) Ecotoxicity tests for compost applications. Ecotoxicol. Env. Saf. 49: 1–16.CrossRefGoogle Scholar
  33. 33.
    Xuan, T., T. Eiji, T. Hiroyuki, M. Mitsuhiro, T. Khan, and I. Chung (2004) Evaluation on phytotoxicity of Neem (Azadirachta indica). A. Juss to crops and weeds. Crop Protect. 23: 335–345.CrossRefGoogle Scholar
  34. 34.
    Robinson, T., G. McMullan, R. Merchant, and P. Nigam (2001) Remediation of dyes in textile effluent: A critical review on current treatment technologies with proposed alternative. Biores. Technol. 77: 247–255.CrossRefGoogle Scholar
  35. 35.
    Casieri, L., G. C. Varese, A. Anastasi, V. Prigione, K. Svobodova, V. F. Marchisio, and C. Novotny (2008) Decolorization and detoxification of Reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus. Folia Microbiol. 53: 44–52.CrossRefGoogle Scholar
  36. 36.
    Kaushik, P. and A. Malik (2009) Fungal dye decolorization: Recent advances and future potential. Env. Internat. 35: 127–141.CrossRefGoogle Scholar
  37. 37.
    Tandi, N. K., J. Nyamangara, and C. Bangira (2005) Environmental and potential health effects of growing leafy vegetables on soil irrigated using sewage sludge and effluent: A case of Zn and Cu. J. Env. Sci. Health Part: B 39: 461–471.CrossRefGoogle Scholar
  38. 38.
    Nwachukwu, O. (2008) Contaminant source as a factor of soil heavy metal toxicity and bioavailability to the plants. Envt. Res. J. 2: 322–326.Google Scholar
  39. 39.
    Khan, M. A., S. S. Shaukat, and M. A. Khan (2009) Growth, yield and nutrient content of Sunflower (Helianthus Annuus L.) using treated wastewater from waste stabilization ponds. Pak. J. Bot. 41: 1391–1399.Google Scholar
  40. 40.
    Greene, R. M., R. J. Gerder, and P. G. Falkowski (1991) Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36: 1772–1782.CrossRefGoogle Scholar
  41. 41.
    Collier, J. L. and A. R. Grossman (1992) Chlorosis induced by nutrient deprivation in Synechocccus sp. J. Bacteriol. 174: 4718–4726.Google Scholar
  42. 42.
    Gadallah, M. A. A. (1996) Phytotoxic effects of industrial and sewage waste waters on growth, chlorophyll content, transpiration rate and relative water content of potted sunflower plants. Water, Air, Soil Poll. 89: 33–47.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of BiochemistryShivaji UniversityKolhapurIndia

Personalised recommendations