Biotechnology and Bioprocess Engineering

, Volume 16, Issue 2, pp 413–418

Enhancement of mass transfer characteristics and phenanthrene degradation in a two-phase partitioning bioreactor equipped with internal static mixers

  • Abdelhay Arwa
  • Stéphane Baup
  • Nicolas Gondrexon
  • Jean-Pierre Magnin
  • John Willison
Research Paper

Abstract

Oxygen and substrate supply have always been considered physical constraints for the performance and operation of two-phase partitioning bioreactors (TPPB), widely used for the degradation of hydrophobic substrates. In this regard, the potential advantages of static mixers in upgrading the oxygen transfer and liquid-liquid dispersions in TPPB have been highlighted. In the present paper, the concomitant influence of static mixers on the gas-liquid mass transfer coefficient kLa and on substrate bioavailability was examined in TPPB. The static method based on conventional forms was developed to estimate the oxygen volumetric mass transfer coefficient. Over a broad range of liquid and air flow rates, the presence of static mixers was found to significantly enhance kLa relative to a mixer-free mode of operation. For identical conditions, static mixers improved the kLa threefold. In the presence of external aeration supply, the boost in the kLa was associated with an increase of 16% in the phenanthrene biodegradation rate due to bubble break up accomplished by the static mixers. On the other hand, static mixers were efficient in enhancing substrate bioavailability by improving the liquid-liquid interfacial area. This effect was reflected by a threefold increase in the degradation rate in the bioreactors with no external supply of air when equipped with static mixers.

Keywords

TPPB bioreactors degradation static mixers mass transfer liquid-liquid dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chisti, Y., M. Kasper, and M. Moo-Young (1990) Mass transfer in external-loop airlift bioreactors using static mixers. Can. J. Chem. Eng. 68: 45–50.CrossRefGoogle Scholar
  2. 2.
    Deziel, E., Y. Comeau, and R. Villemur (1999) Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10: 219–233.CrossRefGoogle Scholar
  3. 3.
    Malinowski, J. J. (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol. Adv. 19: 525–538.CrossRefGoogle Scholar
  4. 4.
    Ascon-Cabrera, M. and J. M. Lebeault (1993) Selection of xenobiotic degrading microorganisms in a biphasic aqueous-organic system. Appl. Environ. Microbiol. 59: 1717–1724.Google Scholar
  5. 5.
    Ascon-Cabrera, M. A. and J. Lebeault (1995) Interfacial area effects of a biphasic aqueous/organic system on growth kinetics of xenobiotic degrading microorganisms. Appl. Microbiol. Biotechnol. 43: 1136–1141.CrossRefGoogle Scholar
  6. 6.
    Sandrin, T. R., W. B. Kight, W. J. Maier, and R. M. Maier (2006) Influence of a nonaqueous phase liquid (NAPL) on biodegradation of phenanthrene. Biodegradation 17: 423–435.CrossRefGoogle Scholar
  7. 7.
    Hsu, K. H, L. E. Erickson, and L. T. Fan (1975) Oxygen transfer to mixed cultures in tower systems. Biotechnol. Bioeng. 17: 499–514.CrossRefGoogle Scholar
  8. 8.
    Lin, C. H., B. S. Fang, C. S. Wu, H. Y. Fang, and T. F. Kuo (1976) Oxygen transfer and mixing in a tower cycling fermenter. Biotechnol. Bioeng. 18: 1557–1572.CrossRefGoogle Scholar
  9. 9.
    Stejskal, J. and F. Potucek (1985) Oxygen transfer in liquids. Biotechnol. Bioeng. 27: 503–508.CrossRefGoogle Scholar
  10. 10.
    Fradette, L., H. Z. Lic, L. Choplin, and P. Tanguy (2006) Gas-liquid dispersions with a SMX static mixer in the laminar regime. Chem. Eng. Sci. 61: 3506–3518.CrossRefGoogle Scholar
  11. 11.
    Ugwu, C. U., J. C. Ogbonna, and H. Tanaka (2003) Design of static mixers for inclined tubular photobioreactors. J. Appl. Phycol. 15: 217–223.CrossRefGoogle Scholar
  12. 12.
    Morra, C., N. Gondrexon, J. P. Magnin, and P. Ozil (2001) Static mixer aeration in a method for producing biomass for effluent treatment. Recent progres en genie des procedes 15(86), (Procedes pour l’Environnement: Eau, Air, Sols), 11–18. CODEN: RPGPEX ISSN:1166-7478. CAN 141:11358 AN 2004:163799 CAPLUS Google Scholar
  13. 13.
    Ugwu, C. U., J. C. Ogbonna, and H. Tanaka (2005) Light/dark cyclic movement of algal culture (Synechcystis aquatilis) in outdoor inclined tubular photo bioreactor equipped with static mixers for effecient production of biomass. Biotechnol. Lett. 27: 75–78.CrossRefGoogle Scholar
  14. 14.
    Ni, X. and S. Gao (1996) Mass transfer characteristics of a pilot pulsed baffled reactor. J. Chem. Tech. Biotechnol. 65: 65–71.CrossRefGoogle Scholar
  15. 15.
    Nielsen, D. R., A. J. Daugulis, and P. J. McLellan (2003) A novel method of simulating oxygen mass transfer in two-phase partitioning bioreactors. Biotechnol. Bioeng. 83: 735–742.CrossRefGoogle Scholar
  16. 16.
    Heyouni, A., M. Roustan, and Z. Do-Quang (2002) Hydrodynamics and mass transfer in gas-liquid flow through static mixers. Chem. Eng. Sci. 57: 3325–3333.CrossRefGoogle Scholar
  17. 17.
    Morra, C. (2003) Mise au point d’un procédé de production d’une biomasse de Acidithiobacillus ferrooxidans par voie bio-électrochimique. Ph.D. Thesis. Institut National Polytechnique de Grenoble, France.Google Scholar
  18. 18.
    Krivobok, S., S. Kuony, C. Meyer, M. Louwagie, J. C. Willison, and Y. Jouanneau (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: Evidence for two ringhydroxylating dioxygenases. J. Bacteriol. 185: 3828–3841.CrossRefGoogle Scholar
  19. 19.
    Shuler, M. L. and F. Kargi (2002) Bioprocess engineering: Basic concepts. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  20. 20.
    Couvert, A., M. F. Péculier, and A. Laplanche (2002) Pressure drop and mass transfer study in static mixers with gas continuous phase. Can. J. Chem. Eng. 80: 727–733.CrossRefGoogle Scholar
  21. 21.
    Al Taweel, A. M. and C. Chen (1996) A novel static mixer for the effective dispersion of immiscible liquids. Chem. Eng. Res. Design 74: 445–450.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Abdelhay Arwa
    • 1
  • Stéphane Baup
    • 1
  • Nicolas Gondrexon
    • 1
  • Jean-Pierre Magnin
    • 1
  • John Willison
    • 2
  1. 1.LEPMI, UMR 5631, INPG / CNRS / UJF, BP75St Martin d’Hères cedexFrance
  2. 2.LCBM, Laboratoire de Chimie et Biologie des Métaux, UMR 5249CEA / CNRScedex 9, GrenobleFrance

Personalised recommendations