Biotechnology and Bioprocess Engineering

, Volume 15, Issue 4, pp 580–589 | Cite as

Submerged monoxenic culture of the entomopathogenic nematode, Steinernema carpocapsae CABA01, in a mechanically agitated bioreactor: Evolution of the hydrodynamic and mass transfer conditions

  • Norberto Chavarría-HernándezEmail author
  • Eduardo Ortega-Morales
  • Apolonio Vargas-Torres
  • Juan-Carlos Chavarría-Hernández
  • Adriana-Inés Rodríguez-Hernández
Research Paper


This study is the first to describe the evolution of both hydrodynamic and oxygen transfer conditions during the submerged culture of the entomopathogenic nematode, Steinernema carpocapsae CABA01 (an indigenous strain isolated within the State of Hidalgo, Mexico), and its symbiotic bacterium, Xenorhabdus nematophila, using an internal-loop mechanically agitated bioreactor of 4.5 L of liquid volume. Concentrations up to 217,306 viable nematodes per mL, with 94% in infective juvenile (IJ) stage (i.e., 204,444 IJ/mL), were achieved in 16 days of bioprocess. The Reynolds number (Re) was used as an index of the actual hydrodynamic conditions, and it varied within the interval 5,150 < Re (dimensionless) < 9,440, involving apparent culture broth viscosity changes from 3 to 5.4 mPa s during the processing. The aeration efficiency was expressed on the basis of the volumetric oxygen transfer coefficient, k L a, which varied within the range 0.026 to 0.170 s−1.


biocontrol bioinsecticides entomopathogenic nematodes bioreactors hydrodynamics oxygen transfer conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kiely, T., D. Donaldson, and A. Grube (2004) Pesticides industry sales and usage. 2000 and 2001 market estimates. pp. 8–9. USEPA, Washington DC, USA.Google Scholar
  2. 2.
    Wood, S. and S. Ehui (2005) Food. pp. 209–241. In: R. Hassan, R. Scholes, and N. Ash (eds.). Ecosystems and Human Wellbeing: Current State and Trends, Volume 1. Island Press, Washington DC, USA.Google Scholar
  3. 3.
    Van-Bortel, W., H. D. Trung, L. K. Thuan, T. Sochantha, D. Socheat, C. Sumrandee, V. Baimai, K. Keokenchanh, P. Samlane, P. Roelants, L. Denis, K. Verhaeghen, V. Obsomer, and M. Coosemans (2008) The insecticide resistance status of malaria vectors in the Mekong region. Malaria J. 7: 102.CrossRefGoogle Scholar
  4. 4.
    Hajek, A. E. (2004) Natural enemies: An introduction to biological control. pp. 3–17. Cambridge University Press, Cambridge, UK.Google Scholar
  5. 5.
    Ehlers, R. U. (2001) Mass production of entomopathogenic nematodes for plant protection. Appl. Microbiol. Biotechnol. 56: 623–633.CrossRefGoogle Scholar
  6. 6.
    Shapiro-llan, D. I. and R. Gaugler (2002) Production technology for entomopathogenic nematodes and their bacterial symbionts. J. Ind. Microbiol. Biotechnol. 28: 137–146.CrossRefGoogle Scholar
  7. 7.
    Forst, S. and D. Clarke (2002) Bacteria-nematode symbiosis. pp. 57–77. In: R. Gaugler (ed.). Entomopathogenic Nematology. CABI Publishing, Cambridge MA, USA.CrossRefGoogle Scholar
  8. 8.
    ChavarrÍa-Hernández, N., M. A. Islas-López, G. Maciel-Vergara, M. Gayosso-Canales, and A. I. RodrÍguez-Hernández (2008) Kinetics of infective juvenile production of the entomopathogenic nematode Steinernema carpocapsae in submerged monoxenic culture. Bioproc.Biosyst. Eng. 31: 419–426.CrossRefGoogle Scholar
  9. 9.
    Chavarría-Hernández, N., R. Sanjuan-Galindo, L. Medina-Torres, and A. I. Rodríguez-Hernández (2007) Submerged monoxenic culture of the entomopathogenic nematode Steinernema carpocapsae in an internal-loop airlift bioreactor using two configurations of the inner tube. Biotechnol. Bioeng. 98: 167–176.CrossRefGoogle Scholar
  10. 10.
    Pace, G. W., W. Grote, D. E. Pitt, and J. M. Pitt (1986) Liquid culture of nematodes. International Patent Application, WO 86/01074.Google Scholar
  11. 11.
    Friedman, M. J., S. E. Langston, and S. Pollitt (1989) Mass production in liquid culture of insect-killing nematodes. International Patent Application, WO 89/04602.Google Scholar
  12. 12.
    Surrey, M. R. and R. J. Davies (1996) Pilot-scale liquid culture and harvesting of an entomopathogenic nematode, Heterorhabditis bacteriophora. J. Invertebr. Pathol. 67: 92–99.CrossRefGoogle Scholar
  13. 13.
    Ehlers, R. U., S. Lunau, K. Krasomil-Osterfeld, and K. H. Osterfeld (1998) Liquid culture of the entomopathogenic nematode bacterium-complex Heterorhabditis megidis/Photorhabdus luminescens. Biocontrol 43: 77–86.CrossRefGoogle Scholar
  14. 14.
    Strauch, O. and R. U. Ehlers (2000) Influence of the aeration rate on the yields of the biocontrol nematode Heterorhabditis megidis in monoxenic liquid cultures. Appl. Microbiol. Biotechnol. 54: 9–13.CrossRefGoogle Scholar
  15. 15.
    Neves, J. M., J. A. Teixeira, N. Simöes, and M. Mota (2001) Effect of airflow rate on yields of Steinernema carpocapsae Az 20 in liquid culture in an external-loop airlift bioreactor. Biotechnol. Bioeng. 72: 369–373.CrossRefGoogle Scholar
  16. 16.
    Johnigk, S. A., F. Ecke, M. Poehling, and R. U. Ehlers (2004) Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): Improved timing of dauer juvenile inoculation. Appl. Microbiol. Biotechnol. 64: 651–658.CrossRefGoogle Scholar
  17. 17.
    Pérez-Santos, U. (2009) Aislamiento de nematodos nativos del estado de Hidalgo con potencial para el control de plagas agrÍcolas. BE Thesis. Universidad Autónoma del Estado de Hidalgo, México.Google Scholar
  18. 18.
    Akhurst, R. J. (1980) Morphological and functional dimorphism in Xenorhabdus spp., Bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303–309.Google Scholar
  19. 19.
    Woodring, J. L. and H. K. Kaya (1988) Steinernematid and Heterorhabditid nematodes: A handbook of biology and techniques. pp. 9–10. Arkansas Agric. Exp. Stn. USA.Google Scholar
  20. 20.
    Martínez-Rodríguez, A. (2008) Aislamiento y producción masiva de simbiontes bacterianos de nematodos nativos del estado de Hidalgo con potencial para el control de plagas agrícolas. BE Thesis. Universidad Autónoma del Estado de Hidalgo, México.Google Scholar
  21. 21.
    Buecher, E. J. and I. Popiel (1989) Liquid culture of the entomogenous nematode Steinernema feltiae with its bacterial symbiont. J. Nematol. 21: 500–504.Google Scholar
  22. 22.
    Chisti, Y. and U. J. Jauregui-Haza (2002) Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochem. Eng. J. 10: 143–153.CrossRefGoogle Scholar
  23. 23.
    Hemrajani, R. R. and G. B. Tatterson (2004) Mechanically stirred vessels. pp. 345–390. In: E. L. Paul, V. A. Atiemo-Obeng, and S. M. Kresta (eds.). Handbook of Industrial Mixing: Science and Practice. John Wiley & Sons, NJ, USA.Google Scholar
  24. 24.
    Nagata, S. (1975) Mixing: Principles and applications. pp. 20–22. Wiley, NY, USA.Google Scholar
  25. 25.
    Young, J. M., P. Dunnill, and J. D. Pearce (1998) Physical properties of liquid nematode cultures and the design of recovery operations. Bioproc. Eng. 19: 121–127.CrossRefGoogle Scholar
  26. 26.
    Chavarría-Hernández, N., A. I. Rodríguez-Hernández, F. Pérez-Guevara, and M. de la Torre (2003) Evolution of culture broth rheological properties during propagation of the entomopathogenic nematode, Steinernema carpocapsae, in submerged monoxenic culture. Biotechnol. Prog. 19: 405–409.CrossRefGoogle Scholar
  27. 27.
    Vrábel, P., R. G. J. M. van der Lans, F. N. van der Schot, K. Ch. A. M. Luyben, B. Xu, and S. O. Enfors (2001) CMA: Integration of fluid dynamics and microbial kinetics in modelling of largescale fermentations. Chem. Eng. J. 84: 463–474.CrossRefGoogle Scholar
  28. 28.
    Felse, A. and T. Panda (2000) Submerged culture production of chitinase by Trichoderma harzianum in stirred tank bioreactors: The influence of agitator speed. Biochem. Eng. J. 4: 115–120.CrossRefGoogle Scholar
  29. 29.
    Garcia-Ochoa, F. and E. Gomez (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 27: 153–176.CrossRefGoogle Scholar
  30. 30.
    Atkinson, B. and F. Mavituna (1991) Biochemical engineering and biotechnology handbook. pp. 732–733. Stockton Press, NY, USA.Google Scholar
  31. 31.
    Bang, W., I. Nikov, H. Delmas, and A. Bascoul (1998) Gas-liquid mass transfer in a new three-phase stirred airlift reactor. J. Chem. Technol. Biotechnol. 72: 137–142.CrossRefGoogle Scholar
  32. 32.
    Lindegren, J. E., R. E. Rij, S. R. Ross, and D. C. Fouse (1986) Respiration rate of Steinernema feltiae infective juveniles at several constant temperatures. J. Nematol. 18: 221–224.Google Scholar
  33. 33.
    Suárez-Sánchez, J. (2002) Evaluación de la demanda específica de oxígeno en cultivo sumergido del nematodo entomopatógeno Steinernema feltiae y de su bacteria simbionte Xenorhabdus nematophilus. MSc Thesis. CINVESTAV-IPN, México.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Norberto Chavarría-Hernández
    • 1
    Email author
  • Eduardo Ortega-Morales
    • 1
  • Apolonio Vargas-Torres
    • 1
  • Juan-Carlos Chavarría-Hernández
    • 1
  • Adriana-Inés Rodríguez-Hernández
    • 1
  1. 1.Cuerpo Académico de Biotecnología AgroalimentariaInstituto de Ciencias Agropecuarias de la Universidad Autónoma delTulancingo de Bravo, HidalgoMexico

Personalised recommendations