Biotechnology and Bioprocess Engineering

, Volume 15, Issue 1, pp 30–39 | Cite as

Electrochemical biomemory device consisting of recombinant protein molecules

  • Junhong Min
  • Taek Lee
  • Soo-Min Oh
  • Hyunhee Kim
  • Jeong-Woo Choi


The new concept micro devices consisting of various biomolecules have been developed in clinical, pharmaceutical, and environmental fields. Particularly, various diagnostics using biomolecule related device have been investigated and commercialized to detect specific molecules in complex matrix. In recent days, biomolecules have been employed to electronic device to generate new alternatives of silicon based nano electronics by applying natural behaviors of biomolecules. We reviewed here the bioelectronic device consisting of proteins developed by mimicking natural phenomena. We surveyed the working principle, fabrication technologies, and memory function validation of metalloprotein based biomemory device.


bioelectronic device recombinant protein biomemory nanofabrication nanobiochip 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cukier, R. I. and D. G. Nocera (1998) Proton-coupled electron transfer. Annu. Rev. Phys. Chem. 49: 337–369.CrossRefGoogle Scholar
  2. 2.
    Fujita, K., N. Nakamura, H. Ohno, B. S. Leigh, K. Niki, H. B. Gray, and J. H. Richards (2004) Mimicking protein-protein electron transfer: voltammetry of Pseudomonas aeroginosa azurin and the Thermus thermophilus CuA domain at ω-derivatized self-assembly-monolayer gold electrodes. J. Am. Chem. Soc. 126: 13954–13961.CrossRefGoogle Scholar
  3. 3.
    Gray, H. B. and J. R. Winkler (1996) Electron transfer in proteins. Annu. Rev. Biochem. 65: 537–561.CrossRefGoogle Scholar
  4. 4.
    Solomon, E. I., R. K. Szilagyi, S. D. George, and L. Basumallick (2004) Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem. Rev. 104: 419–458.CrossRefGoogle Scholar
  5. 5.
    Ubbink, M., J. A. R. Worrall, G. W. Canters, E. J. J. Groenen, and M. Huber (2002) Paramagnetic resonance of biological metal centers. Annu. Rev. Biophys. Biomol. Struct. 31: 393–422.CrossRefGoogle Scholar
  6. 6.
    Jeon, B. Y., S. J. Kim, D. H. Kim, B. K. Na, D. H. Park, H. T. Tran, R. Zhang, and D. H. Ahn (2007) Development of a serial bioreactor system for direct ethanol production from starch using Aspergillus niger and Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 12: 566–573.CrossRefGoogle Scholar
  7. 7.
    Lee, S. W., W. J. Chang, R. Bashir, and Y. M. Koo (2007) “Bottom-up” approach for implementing nano/microstructure using biological and chemical interactions. Biotechnol. Bioprocess Eng. 12: 185–199.CrossRefGoogle Scholar
  8. 8.
    Paek, S. H., J. H. Cho, I. H. Cho, Y. K. Kim, and B. K. Oh (2007) Immunosensors for point-of care testing. Bio-Chip J. 1: 1–16.Google Scholar
  9. 9.
    Park, S. W., J. H. Lee, H. C. Yoon, and S. S. Yang (2007) A smart bioelectrocatalytic immunosensing labon-a-chip for portable diagnostic application. BioChip J. 1: 35–42.Google Scholar
  10. 10.
    Willner, I. and E. Katz (2005) Bioelectronics: From theory to applications. pp. 475–480. Wiley-VCH, Weinheim, Germany.Google Scholar
  11. 11.
    Jyoung, J. Y., S. H. Hong, W. Lee, and J. W. Choi (2006) Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosens. Bioelectron. 21: 2315–2319.CrossRefGoogle Scholar
  12. 12.
    Lee, W., K. S. Park, Y. W. Kim, W. H. Lee, and J. W. Choi (2005) Protein array consisting of sol-gel bioactive platform for detection of Escherichia coli O157:H7. Biosens. Bioelectron. 20: 2292–2299.CrossRefGoogle Scholar
  13. 13.
    Oh, B. K., Y. K. Kim, K. W. Park, W. H. Lee, and J. W. Choi (2004) Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens. Bioelectron. 19: 1497–1504.CrossRefGoogle Scholar
  14. 14.
    Oh, B. K., W. Lee, B. S. Chun, Y. M. Bae, W. H. Lee, and J. W. Choi (2005) The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 20: 1847–1850.CrossRefGoogle Scholar
  15. 15.
    Yang, M., Y. Yang, G. Shen, and R. Yu (2004) Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode. Anal. Biochem. 334: 127–134.CrossRefGoogle Scholar
  16. 16.
    Choi, J. W., B. K. Oh, Y. H. Jang, and D. Y. Kang (2008) Ultrasensitive immunoassay for prostate specific antigen using scanning tunneling microscopy-based electrical detection. Appl. Phys. Lett. 93: 033110(1)–033110(3).Google Scholar
  17. 17.
    El-Said, W. A., C. H. Yea, H. Kim, B. K. Oh, and J. W. Choi (2009) Cell-based chip for the detection of anticancer effect on HeLa cells using cyclic voltammetry. Biosens. Bioelectron. 24: 1259–1265.CrossRefGoogle Scholar
  18. 18.
    Kang, D. Y., J. H. Lee, B. K. Oh, and J. W. Choi (2009) Ultra-sensitive immunosensor for β-amyloid (1–42) using scanning tunneling microscopy-based electrical detection. Biosens. Bioelectron. 24: 1431–1436.CrossRefGoogle Scholar
  19. 19.
    Singh, R. P., Y. J. Kim, B. K. Oh, and J. W. Choi (2009) Glutathione-s-transferase based electrochemical biosensor for the detection of captan. Electrochem. Commun. 11: 181–185.CrossRefGoogle Scholar
  20. 20.
    Yagati, A. K., M. Jung, S. U. Kim, J. Min, and J. W. Choi (2009) Nanoscaled redox active protein adsorption on Au-dot arrays: an electrochemical scanning probe microscopic investigation for application in nanobiodeveces. Thin Solid Films (In Press).Google Scholar
  21. 21.
    Yagati, A. K., S. U. Kim, J. Min, and J. W. Choi (2009) Ferredoxin molecular thin film with intrinsic switching mechanism for biomemory application. J. Nanosci. Nanotechnol. (In Press).Google Scholar
  22. 22.
    Kim, S. U., Y. J. Kim, J. W. Choi, and B. K. Oh (2007) Thin film fabrication of electroactive protein with heme group. BioChip J. 1: 188–192.Google Scholar
  23. 23.
    Choi, J. W., J. S. Kim, S. U. Kim, and B. K. Oh (2008) Self-assembled monolayer of DTSSP modified azurin for biomolecular electronic device. Mol. Cryst. Liq. Cryst. 492: 365–374.Google Scholar
  24. 24.
    Choi, J. W., Y. J. Kim, S. U. Kim, J. Min, and B. K. Oh (2008) The fabrication of functional biosurface composed of iron storage protein, ferritin. Ultramicroscopy 108: 1356–1359.CrossRefGoogle Scholar
  25. 25.
    Lee, T., S. U. Kim, J. H. Lee, J. Min, and J. W. Choi (2009) Fabrication of nano scaled protein monolayer consisting of cytochrome c on self-assembled 11-MUA layer for bioelectronic device. J. Nanosci. Nanotechnol. (In Press).Google Scholar
  26. 26.
    Kim, S. U., A. K. Yagati, J. Min, and J. W. Choi (2009) Biomemory device composed of mutant azurin thin films modified by site-directed mutagenesis. Thin Solid Films 518: 682–687.CrossRefGoogle Scholar
  27. 27.
    Jaenicke, R. and G. Bohm (1998) The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8: 738–748.CrossRefGoogle Scholar
  28. 28.
    Moczygemba, C., J. Guidry, K. L. Jones, C. M. Gomes, M. Teixeira, and P. W. Stafshede (2001) High stability of the ferredoxin from the hyperthermophilic archaeon A. ambivalens: Involvement of electrostatic interactions and cofactors. Protein Sci. 10: 1539–1548.CrossRefGoogle Scholar
  29. 29.
    Ulman, A. (1991) An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly. Academic Press, Inc., San Diego, CA, USA.Google Scholar
  30. 30.
    Roberts, G. G., P. S. Vincett, and W. A. Barlow (1981) Technological applications of langmuir-blodgett films. Phys. Technol. 12: 69–75.CrossRefGoogle Scholar
  31. 31.
    Peterson, I. R. (1990) Langmuir-blodgett films. J. Phys. D 23: 379–395.CrossRefGoogle Scholar
  32. 32.
    Corkery, R. W. (1997) Langmuir-blodgett (L-B) multilayer films. Langmuir 13: 3591–3594.CrossRefGoogle Scholar
  33. 33.
    Guo, Y., F. Feng, and T. Miyashita (1999) Preparation of poly(N-alkylmethacrylamide) langmuir-blodgett films for the application to a novel dry-developed positive deep UV resist. Macromolecules 32: 1115–1118.CrossRefGoogle Scholar
  34. 34.
    Iriyama, K. (1979) Methods of preparing chlorophyll a multilayers on glass plates. Photochem. Photobiol. 29: 633–636.CrossRefGoogle Scholar
  35. 35.
    Iriyama, K., M. Yoshiura, and F. Mizutani (1980) Deposition of chlorophyll-a langmuir-blodgett films onto an SnO2 optically transparent electrode. Thin Solid Films 47: 47–54.CrossRefGoogle Scholar
  36. 36.
    Tkachenko, N. V., P. H. Hynninen, and H. Lemmetyinen (1996) Photoelectric signals of chlorophyll a langmuir-blodgett films. Chem. Phys. Lett. 261: 234–240.CrossRefGoogle Scholar
  37. 37.
    Choi, H. G., B. K. Oh, W. H. Lee, and J. W. Choi (2001) Deposition behavior and photoelectrochemical characteristics of chlorophyll a langmuir-blodget films. Biotechnol. Bioprocess Eng. 6:183–188.CrossRefGoogle Scholar
  38. 38.
    Kim, Y. K., M. S. Kwak, W. H. Lee, and J. W. Choi (2000) Ultrasonic pretreatment for thermophilic aerobic digestion in industrial waste activated sludge treatment. Biotechnol. Bioprocess Eng. 5: 469–474.CrossRefGoogle Scholar
  39. 39.
    Choi, J. W., J. Min, W. H. Lee, and S. B. Lee (2000) Approximated solution of model for three-phase fluidized bed biofilm reactor in wastewater treatment. Biotechnol. Bioprocess Eng. 5: 65–70.CrossRefGoogle Scholar
  40. 40.
    Erokhin, V. (1999) Protein Architecture. Interfacing Molecular Assemblies and Immobilization Biotechnology. pp. 99–101. Marcel Dekker, NY, USA.Google Scholar
  41. 41.
    Schon, J. H., H. Meng, and Z. Bao (2001) Field-effect modulation of the conductance of single molecules. Science 294: 2138–2140.CrossRefGoogle Scholar
  42. 42.
    Corni, S. (2007) A theoretical study of the electrochemical gate effect in a STM-based biomolecular transistor. IEEE Trans. Nanotech. 6: 561–570.CrossRefGoogle Scholar
  43. 43.
    Tomizaki, K., L. Yu, L. Wei, D. F. Bocian, and J. S. Lindsey (2003) Synthesis of cyclic hexameric porphyrin arrays. Anchors for surface immobilization and columnar self-assembly. J. Org. Chem. 68: 8199–8207.CrossRefGoogle Scholar
  44. 44.
    Liu, Z., A. A. Yasseri, J. S. Lindsey, and D. F. Bocian (2003) Molecular memories that survive silicon device processing and real-world operation. Science 302: 1543–1545.CrossRefGoogle Scholar
  45. 45.
    Alessandrini, A., M. Salerno, S. Frabboni, and P. Facci (2005) Single-metalloprotein wet biotransistor. Appl. Phys. Lett. 86: 133902.CrossRefGoogle Scholar
  46. 46.
    Lu, W. and Z. Suo (2002) Symmetry breaking in self-assembled monolayers on solid surfaces: anisotropic surface stress. Phys. Rev. B 65: 085401.CrossRefGoogle Scholar
  47. 47.
    Baum, T., S. Ye, and K. Uosaki (1999) Formation of self-Assembled monolayers of alkanethiols on GaAs surface with in situ surface activation by ammonium hydroxide. Langmuir 15: 8577–8579.CrossRefGoogle Scholar
  48. 48.
    Schwartz, D. K. (2001) Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52: 107–137.CrossRefGoogle Scholar
  49. 49.
    Tseng, R. J., C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang (2006) Digital memory device based on tobacco mosaic conjugated with nanoparticles. Nat. Nanotechnol. 1: 72–77.CrossRefGoogle Scholar
  50. 50.
    Zhang, D. Y., A. J. Turberfield, B. Yurke, and E. Winfree (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318: 1121–1125.CrossRefGoogle Scholar
  51. 51.
    Collier, C. P., J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong, J. R. Heath, and J. F. Stoddart (2001) Molecularbased electronically switchable tunnel junction devices. J. Am. Chem. Soc. 123: 12632–12641.CrossRefGoogle Scholar
  52. 52.
    Huang, Y., X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber (2001) Logic gates and computation from assembled nanowire building blocks. Science 294: 1313–1317.CrossRefGoogle Scholar
  53. 53.
    Liu, Z., A. A. Yasseri, J. S. Lindsay, and D. F. Bocian (2003) Molecular memories that survive silicon device processing and real-world operation. Science 302: 1543–1545.CrossRefGoogle Scholar
  54. 54.
    Sachon, J. H., H. Meng, and Z. Bao (2001) Field effect modulation of the conductance of the single molecules. Science 294: 2138–2140.CrossRefGoogle Scholar
  55. 55.
    Tseng, G. Y. and J. C. Ellenbogen (2001) Toward nanocomputers. Science 294: 1293–1294.CrossRefGoogle Scholar
  56. 56.
    Wal, C. H., M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Philips, A. S. Zibrov, and M. D. Lukin (2003) Atomic memory of correlated photon states. Science 301: 196–200.CrossRefGoogle Scholar
  57. 57.
    Amsinck, C. J., N. H. D. Spigna, D. P. Nackashi, and P. D. Franzon (2005) Scaling constraints in nanoelectronic random-access memories. Nanotechnology 16: 2251–2260.CrossRefGoogle Scholar
  58. 58.
    Chao, L., W. Fan, L. Bo, Z. Daihua, H. Song, T. Tao, L. Xiaolei, L. Zuqin, S. Asano, M. Meyyappan, H. Jie, and Z. Chongwu (2004) Multilevel memory based on molecular devices. Appl. Phys. Lett. 84: 1949–1951.CrossRefGoogle Scholar
  59. 59.
    Lee, S. H., Y. Jung, and R. Agarwal (2007) Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol. 2: 626–630.CrossRefGoogle Scholar
  60. 60.
    Li, C., W. Fan, D. A. Straus, B. Lei, S. Asano, D. H. Zhang, J. Han, M. Meyyappan, and C. W. Zhou (2004) Charge storage behavior of nanowire transistors functionalized with bis(terpyridine)-Fe(II) molecules: dependence on molecular structure. J. Am. Chem. Soc. 126: 7750–7751.CrossRefGoogle Scholar
  61. 61.
    Li, Q., G. Mathur, S. Gowda, S Surthi, Q. Zhao, L Yu, J. S. Lindsey, D. F. Bocian, and V. Misra (2004) Multibit memory using self-assembly of mixed ferrocene/porphyrin monolayers on silicon. Adv. Mater. 16: 133–137.CrossRefGoogle Scholar
  62. 62.
    Tseng, R. J., J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang (2005) Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 5: 1077–1080.CrossRefGoogle Scholar
  63. 63.
    Zhu, Y., D. Zhao, R. Li, and J. Liu (2006) Self-aligned TiSi2/Si heteronanocrystal nonvolatile memory. Appl. Phys. Lett. 88: 103507(1)–103507(3).Google Scholar
  64. 64.
    Choi, J. W., Y. S. Nam, S. J. Park, W. H. Lee, D. Kim, and M. Fujihara (2001) Rectified photocurrent of molecular photodiode consisting of cytochrome c/GFP hetero thin films. Biosens. Bioelectron. 16: 819–825.CrossRefGoogle Scholar
  65. 65.
    Choi, J. W., Y. S. Nam, W. H. Lee, D. Kim, and M. Fujihara (2001) Rectified photocurrent of the proteinbased bio-photodiode. Appl. Phys. Lett. 79: 1570–1572.CrossRefGoogle Scholar
  66. 66.
    Choi, J. W. and M. Fujihara (2004) Molecular-scale biophotodiode consisting of a green fluorescent protein/cytochrome c self-assembled heterolayer. Appl. Phys. Lett. 84: 2187–2189.CrossRefGoogle Scholar
  67. 67.
    Lee, B., S. Takeda, K. Nakajima, J. Noh, J. W. Choi, M. Hara, and T. Nagamune (2004) Rectified photocurrent in a protein based molecular photo-diode consisting of a cytochrome b562-green fluorescent protein chimera self-assembled monolayer. Biosens. Bioelectron. 19: 1169–1174.CrossRefGoogle Scholar
  68. 68.
    Nam, Y. S., J. W. Choi, and W. H. Lee (2004) Photoelectrical properties of molecular layer consisting of chlorophyll a/ferredoxin heterostructure. Appl. Phys. Lett. 85: 6275–6277.CrossRefGoogle Scholar
  69. 69.
    Beni, G. (1980) Theory of electrochemical memory. J. Electrochem. Soc. 127: 467–477.CrossRefGoogle Scholar
  70. 70.
    Thomas, D., J. N. Barbotin, A. David, J. F. Hervagault, and J. L. Romette (1977) Experimental evidence for a kinetic and electrochemical memory in enzyme membranes. Proc. Natl. Acad. Sci. USA 74: 5314–5317.CrossRefGoogle Scholar
  71. 71.
    Ur’ev, V. N., B. M. Grafov, A. V. Dribinskii, and V. P. Lukovtsev (2000) Electrochemical memory cells. Russ. J. Electrochem. 36: 1265–1267.CrossRefGoogle Scholar
  72. 72.
    Moller, S., C. Perlov, W. Jackson, C. Taussig, and S. R. Forrest (2003) A polymer/semiconductor write-once read-many-times memory. Nature 426: 166–169.CrossRefGoogle Scholar
  73. 73.
    Chen, Q., L. Zhao, C. Li, and G. Shi (2007) Electrochemical fabrication of a memory device based on conducting polymer nanocomposites. J. Phys. Chem. 111: 18392–18396.Google Scholar
  74. 74.
    Sarkar, J., S. Tang, D. Shahrjerdi, and S. K. Baneerjee (2007) Vertical flash memory with protein mediated assembly of nanocrystal floating gate. Appl. Phys. Lett. 90: 103512.CrossRefGoogle Scholar
  75. 75.
    Choi, J. W., B. K. Oh, J. Min, and Y. J. Kim (2007) Protein-based biomemory device consisting of the cysteinemodified azurin. Appl. Phys. Lett. 91: 263902.CrossRefGoogle Scholar
  76. 76.
    Ouyang, J., C. H. Chu, C. R. Szmanda, L. Ma, and Y. Yang (2004) Programmable polymer thin film and nonvolatile memory device. Nat. Mater. 3: 918–922.CrossRefGoogle Scholar
  77. 77.
    Tomizaki, K. and H. Mihara (2007) Phosphate mediated molecular memory driven by two different protein kinases as information input elements. J. Am. Chem. Soc. 129: 8345–8352.CrossRefGoogle Scholar
  78. 78.
    Tseng, R. J., C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat. Nanotechnol. 1: 72–77.CrossRefGoogle Scholar
  79. 79.
    Mendes, P. M., K. L. Christman, P. Parthasarathy, E. Schopf, J. Ouyang, Y. Yang, J. A. Preece, H. D. Maynard, Y. Chen, and J. F. Stoddart (2007) Electrochemically controllable conjugation of proteins on surfaces. Bioconjugate Chem. 18: 1919–1923.CrossRefGoogle Scholar
  80. 80.
    Alessandrini, A. and M. Salerno (2005) Single-metalloprotein wet biotransistor. Appl. Phys. Lett. 86: 133902.CrossRefGoogle Scholar
  81. 81.
    Alessandrini, A., S. Corni, and P. Facci (2006) Unravelling single metalloprotein electron transfer by scanning probe techniques. Phys. Chem. Chem. Phys. 8: 4383–4397.CrossRefGoogle Scholar
  82. 82.
    Baron, R., O. Lioubashevski, E. Katz, T. Niazov, and I. Willner (2006) Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. Angew. Chem. Int. Ed. 45: 1572–1576.CrossRefGoogle Scholar
  83. 83.
    Willner, I. and E. Katz (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. 39: 1180–1218.CrossRefGoogle Scholar
  84. 84.
    Kim, S. U., A. K. Yagati, R. P. Singh, J. Min, and J. W. Choi (2009) Charge storage investigation in self-assembled monolayer of redox-active recombinant azurin. Curr. Appl. Phys. 9: e71–e75.CrossRefGoogle Scholar
  85. 85.
    Nam, Y. S., S. U. Kim, T. Lee, D. Y. Kang, J. Min, and J. W. Choi (2009) Charge retention of self-assembled ferredoxin monolayer by the reduction-oxidation control for biomemory device. J. Nanosci. Nanotechnol. 9: 7113–7117.CrossRefGoogle Scholar
  86. 86.
    Chung, Y. H., T. Lee, J. Min, and J. W. Choi (2010) Fabrication of biomemory device composed of myoglobin on DTSSP layer. Mol. Cryst. Liq. Cryst. (In press)Google Scholar
  87. 87.
    Griffiths, G. (1997) Detection and therapy of lesions with biotin/avidin polymer conjugates. 15: 254.Google Scholar
  88. 88.
    Sambrook, J., E. Fritsch, and T. Maniatis (1989) Molecular cloning: A Laboratory Manual. 3rd ed., pp. 6.1–6.30. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
  89. 89.
    Kim, S. U., Y. J. Kim, C. H. Yea, J. Min, and J. W. Choi (2008) Fabrication of functional biomolecular layer using recombinant technique for the bioelectronic device. Korean J. Chem. Eng. 25: 1115–1119.CrossRefGoogle Scholar
  90. 90.
    Lee, T., S. U. Kim, W. A. El-Said, J. Min, and J. W. Choi (2009) Verification of surfactant CHAPS effect using AFM for making biomemory device consisting of recombinant azurin monolayer. Ultramicroscopy (Submitted).Google Scholar
  91. 91.
    Lee, J. B., S. H. Um, J. W. Choi, and K. K. Koo (2003) Elimination of aggregates of ferredoxin from its selfassembled monolayer on silicon substrate. Colloids Surf. B 30: 307–314.CrossRefGoogle Scholar
  92. 92.
    Lee, J. B., S. H. Um, J. W. Choi, and K. K. Koo (2003) Surface modification of a self-assembled ferredoxin monolayer on a gold substrate by CHAPS. Langmuir 19: 8744–8748.CrossRefGoogle Scholar
  93. 93.
    Lee, J. B., D. J. Kim, J. W. Choi, and K. K. Koo (2004) Preparation of a self-assembled cytochrome c monolayer on a gold substrate for biomolecular device architecture. Mater. Sci. Eng. C 24: 79–81.CrossRefGoogle Scholar
  94. 94.
    Lee, T., S. U. Kim, J. Min, and J. W. Choi (2010) Multilevel biomemory device consisting of recombinant Azurin/Cytochrome c. Adv. Matt. 22: 510–514.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Junhong Min
    • 1
  • Taek Lee
    • 2
  • Soo-Min Oh
    • 3
  • Hyunhee Kim
    • 3
  • Jeong-Woo Choi
    • 2
    • 3
  1. 1.College of BionanotechnologyKyungwon UniversitySeongnamKorea
  2. 2.Department of Chemical & Biomolecular EngineeringSogang UniversitySeoulKorea
  3. 3.Interdisciplinary Program of Integrated Biotechnology Sogang UniversitySeoulKorea

Personalised recommendations