Biotechnology and Bioprocess Engineering

, Volume 15, Issue 1, pp 1–10 | Cite as

Biomass-derived volatile fatty acid platform for fuels and chemicals

  • Ho Nam Chang
  • Nag-Jong Kim
  • Jongwon Kang
  • Chang Moon Jeong
Reviews

Abstract

The typical biorefinery platforms are sugar, thermochemical (syngas), carbon-rich chains, and biogas platforms, each offering unique advantages and disadvantages. The sugar platform uses hexose and pentose sugars extracted or converted from plant body mass. The thermochemical (syngas) platform entails a chemical or biological conversion process using pyrolysis or gasification of plants to produce biofuels. The carbon-rich chains platform is used to produce biodiesel from long-chain fatty acids or glycerides. In the present work, we suggest a new platform using volatile fatty acids (VFAs) for the production of biofuels and biochemicals production. The VFAs are short-chain fatty acids composed mainly of acetate and butyrate in the anaerobic digestion (AD) process, which does not need sterilization, additional hydrolysis enzymes (cellulose or xylanase), or a high cost pretreatment step. VFAs are easily produced from almost all kinds of biomass with low lignin content (terrestrial, aquatic, and marine biomass) by the AD process. Considering that raw material alone constitutes 40∼80% of biofuel production costs, biofuels made from VFAs derived from waste organic biomass potentially offer significant economical advantage.

Keywords

volatile fatty acid anaerobic digestion biofuel biochemical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell, J. E., D. B. Lobell, R. C. Genova, and C. B. Field (2008) The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42: 5791–5794.CrossRefGoogle Scholar
  2. 2.
    Sanchez, O. J. and C. A. Cardona (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270–5295.CrossRefGoogle Scholar
  3. 3.
    Chynoweth, D. P. (2002) Review of biomethane from marine biomass (DRAFT). www.agen.ufl.edu/~chyn/download/Publications/DC/Reports/marinefinal_FT.pdf.Google Scholar
  4. 4.
    Carlsson, A. S., J. B. Beilen, R. Möller, and D. Clayton (2007) Micro- and macro-algae: Utility for industrial applications. CPL Press, Berks RG14 1RZ, UK.Google Scholar
  5. 5.
    Klass, D. L. (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego, CA, USA.Google Scholar
  6. 6.
    Park, J. I., H. C. Woo, and J. H. Lee (2008) Production of bio-energy from marine algae: status and perspectives. Korean Chem. Eng. Res. 46: 833–844.Google Scholar
  7. 7.
    Drake, H. L., K. Küsel, and C. Matthies (2006) Acetogenic prokaryotes. Prokaryotes 2: 354–420.CrossRefGoogle Scholar
  8. 8.
    Datta, R. (1981) Acidogenic fermentation of corn stover. Biotechnol. Bioeng. 23: 61–77.CrossRefGoogle Scholar
  9. 9.
    Batstone, D. J., J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, and V. A. Vavilin (2002) Anaerobic digestion model no. 1. IWA task group for mathematical modelling of anaerobic digestion processes staff, London, UK.Google Scholar
  10. 10.
    Chang, H. N., B. J. Kim, J. W. Kang, C. M. Jeong, N. J. Kim, and J. K. Park (2008) High cell density ethanol fermentation in an upflow packed-bed cell recycle bioreactor. Biotechnol. Bioprocess Eng. 13: 123–135.CrossRefGoogle Scholar
  11. 11.
    Holtzapple, M. T. and C. B. Granda (2008) Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Appl. Biochem. Biotechnol. 156: 95–106.CrossRefGoogle Scholar
  12. 12.
    Coyle, W. (2007) The future of biofuels: a global perspective. AMBER Waves 5: 24–29.Google Scholar
  13. 13.
    Holtzapple, M., M. Ross, N. Chang, V. Chang, S. Adelson, and C. Brazel (1999) Biomass conversion to mixed alcohol fuels using the MixAlco process. Appl. Biochem. Biotechnol. 79: 609–631.CrossRefGoogle Scholar
  14. 14.
    Agbogdo, F. K. (2005) Anaerobic fermentation of rice straw and chicken manure to carboxylic acids. Ph.D. Thesis. Texas A&M University, Texas, USA.Google Scholar
  15. 15.
    Thanakoses, P., A. S. Black, and M. T. Holtzapple (2003) Fermentation of corn stover to carboxylic acids. Biotechnol. Bioeng. 83: 191–200.CrossRefGoogle Scholar
  16. 16.
    Moody, A. G. (2006) Pilot-scale fermentation of office paper and chicken manure to carboxylic acids. M.S. Thesis. Texas A&M University, Texas, USA.Google Scholar
  17. 17.
    Lim, S. J., B. J. Kim, C. M. Jeong, J. Choi, Y. H. Ahn, and H. N. Chang (2008) Anaerobic organic acid production of food waste in once-a-day feeding and drawingoff bioreactor. Bioresour. Technol. 99: 7866–7874.CrossRefGoogle Scholar
  18. 18.
    Unpublished data in our study.Google Scholar
  19. 19.
    Bain, R. L. (2007) World biofuels assessment worldwide biomass potential: Technology characterizations. NREL Milestone Report. NREL/MP-510-42467.Google Scholar
  20. 20.
    Kann, B., P. R. Gruber, and M. Kamm (2007) Biorefineries — industrial processes and products: status quo and future directions. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.Google Scholar
  21. 21.
    Lim, S. J., E. Y. Kim, Y. H. Ahn, and H. N. Chang (2008) Biological nutrient removal with volatile fatty acids from food wastes in sequencing batch reactor. Korean J. Chem. Eng. 25: 129–133.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ho Nam Chang
    • 1
  • Nag-Jong Kim
    • 1
  • Jongwon Kang
    • 1
  • Chang Moon Jeong
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations