Biotechnology and Bioprocess Engineering

, Volume 15, Issue 1, pp 11–21 | Cite as

Synthetic biology for biofuels: Building designer microbes from the scratch

  • Cheol-Min Ghim
  • Taesung Kim
  • Robert J. Mitchell
  • Sung Kuk Lee
Reviews

Abstract

The ultimate goal in the production of biofuels is to produce fuels identical or similar to petroleum-derived transportation fuels more efficiently and in commercial quantities. Synthetic biologists have been engineering microbes to synthesize biofuels, such as butanol and fatty acid- or isoprenoid-based fuels, which are nearly identical to gasoline and diesel. One of the most urgent demands along this direction is to attain a solid framework for characterizing and standardizing the biological parts and devices. It seems quite promising because biotechnologies specially based on miniaturizations have been making a big contribution to this work. Therefore, in this review, recent advances and difficulties in the biofuel field are discussed, along with the advances of synthetic biology, which will make it possible to create designer microorganisms that produce economically viable next generation biofuels, aside from bioethanol, from corn or sugar cane, and biodiesel from plant or animal oils.

Keywords

biofuel lignocellulose microfluidics part standardization synthetic biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, S. K., H. Chou, T. S. Ham, T. S. Lee, and J. D. Keasling (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19: 556–563.CrossRefGoogle Scholar
  2. 2.
    Fortman, J. L., S. Chhabra, A. Mukhopadhyay, H. Chou, T. S. Lee, E. Steen, and J. D. Keasling (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol. 26: 375–381.CrossRefGoogle Scholar
  3. 3.
    Keasling, J. D. (2009) Engineering microbial metabolism for production of advanced biofuels. Abstract of 2009 AIChE Annual Meeting. November 8–13. Nashville, TN, USA.Google Scholar
  4. 4.
    Fargione, J., J. Hill, D. Tilman, S. Polasky, and P. Hawthorne (2008) Land clearing and the biofuel carbon debt. Science 319: 1235–1238.CrossRefGoogle Scholar
  5. 5.
    Pienkos, P. T. and M. Zhang (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16: 743–762.CrossRefGoogle Scholar
  6. 6.
    Martinez, A., M. E. Rodriguez, S. W. York, J. F. Preston, and L. O. Ingram (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol. Bioengin. 69: 526–536.CrossRefGoogle Scholar
  7. 7.
    Morais, P. B., C. A. Rosa, V. R. Linardi, F. Carazza, and E. A. Nonato (1996) Production of fuel alcohol by Saccharomyces strains from tropical habitats. Biotechnol. Lett. 18: 1351–1356.CrossRefGoogle Scholar
  8. 8.
    Saloheimo, A., J. Rauta, O. V. Stasyk, A. A. Sibirny, M. Penttila, and L. Ruohonen (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 74: 1041–1052.CrossRefGoogle Scholar
  9. 9.
    Rintala, E., M. G. Wiebe, A. Tamminen, L. Ruohonen, and M. Penttila (2008) Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision. BMC Microbiol. doi: 10.1186/1471-2180-8-53.Google Scholar
  10. 10.
    Bertilsson, M., J. Andersson, and G. Liden (2008) Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess. Biosyst. Eng. 31: 369–377.CrossRefGoogle Scholar
  11. 11.
    Katahira, S., M. Ito, H. Takema, Y. Fujita, T. Tanino, T. Tanaka, H. Fukuda, and A. Kondo (2008) Improvement of ethanol productivity during xylose and glucose cofermentation by xylose-assimilating Saccharomyces cerevisiae via expression of glucose transporter Sut1. Enzyme Microb. Technol. 43: 115–119.CrossRefGoogle Scholar
  12. 12.
    Hector, R. E., N. Qureshi, S. R. Hughes, and M. A. Cotta (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl. Microbiol. Biotechnol. 80: 675–684.CrossRefGoogle Scholar
  13. 13.
    Hahn-Hagerdal, B., K. Karhumaa, M. Jeppsson, and M. F. Gorwa-Grauslund (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Biofuels 108: 147–177.CrossRefGoogle Scholar
  14. 14.
    Madhavan, A., S. Tamalampudi, K. Ushida, D. Kanai, S. Katahira, A. Srivastava, H. Fukuda, V. S. Bisaria, and A. Kondo (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82: 1067–1078.CrossRefGoogle Scholar
  15. 15.
    Wisselink, H. W., M. J. Toirkens, Q. Wu, J. T. Pronk, and A. J. A. van Maris (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 75: 907–914.CrossRefGoogle Scholar
  16. 16.
    Jeon, B. S., Y. S. Um, S. M. Lee, S. Y. Lee, H. J. Kim, Y. H. Kim, M. B. Gu, and B. I. Sang (2008) Performance analysis of a proton exchange membrane fuel cell (PEMFC) integrated with a trickling bed bioreactor for biological high-rate hydrogen production. Energy Fuels 22: 83–86.CrossRefGoogle Scholar
  17. 17.
    Cornillot, E., R. V. Nair, E. T. Papoutsakis, and P. Soucaille (1997) The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179: 5442–5447.Google Scholar
  18. 18.
    Heap, J. T., O. J. Pennington, S. T. Cartman, G. P. Carter, and N. P. Minton (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J. Microbiol. Meth. 70: 452–464.CrossRefGoogle Scholar
  19. 19.
    Tesser, R., M. Di Serio, M. Guida, M. Nastasi, and E. Santacesaria (2005) Kinetics of oleic acid esterification with methanol in the presence of triglycerides. Ind. Eng. Chem. Res. 44: 7978–7982.CrossRefGoogle Scholar
  20. 20.
    Ranganathan, S. V., S. L. Narasimhan, and K. Muthukumar (2008) An overview of enzymatic production of biodiesel. Bioresour. Technol. 99: 3975–3981.CrossRefGoogle Scholar
  21. 21.
    Fukuda, H., A. Kondo, and H. Noda (2001) Biodiesel fuel production by transesterification of oils. J. Biosci. Bioengin. 92: 405–416.CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., M. A. Dube, D. D. McLean, and M. Kates (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 89: 1–16.CrossRefGoogle Scholar
  23. 23.
    Samukawa, T., M. Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, and H. Fukuda (2000) Pretreatment of immobilized Candida Antarctica lipase for biodiesel fuel production from plant oil. J. Biosci. Bioengin. 90: 180–183.Google Scholar
  24. 24.
    Du, W., Y. Y. Xu, D. H. Liu, and Z. B. Li (2005) Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J. Mol. Catal. B: Enzym. 37: 68–71.CrossRefGoogle Scholar
  25. 25.
    Noureddini, H., X. Gao, and R. S. Philkana (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 96: 769–777.CrossRefGoogle Scholar
  26. 26.
    Du, W., Y. Y. Xu, D. H. Liu, and J. Zeng (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B: Enzym. 30: 125–129.CrossRefGoogle Scholar
  27. 27.
    Lu, J., K. L. Nie, F. Wang, and T. W. Tan (2008) Immobilized lipase Candida sp 99–125 catalyzed methanolysis of glycerol trioleate: Solvent effect. Bioresour. Technol. 99: 6070–6074.CrossRefGoogle Scholar
  28. 28.
    Du, W., D. H. Liu, L. L. Li, and L. M. Dai (2007) Mechanism exploration during lipase-mediated methanolysis of renewable oils for biodiesel production in a tert-butanol system. Biotechnol. Prog. 23: 1087–1090.CrossRefGoogle Scholar
  29. 29.
    Fu, B. Y. and P. T. Vasudevan (2009) Effect of organic solvents on enzyme-catalyzed synthesis of biodiesel. Energy Fuels 23: 4105–4111.CrossRefGoogle Scholar
  30. 30.
    Mukhopadhyay, A., A. M. Redding, B. J. Rutherford, and J. D. Keasling (2008) Importance of systems biology in engineering microbes for biofuel production. Curr. Opin. Biotechnol. 19: 228–234.CrossRefGoogle Scholar
  31. 31.
    Angerbauer, C., M. Siebenhofer, M. Mittelbach, and G. M. Guebitz (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour. Technol. 99: 3051–3056.CrossRefGoogle Scholar
  32. 32.
    Kalscheuer R, T. Stölting, and A. Steinbüchel (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152: 2529–2536.CrossRefGoogle Scholar
  33. 33.
    Lu, X. F., H. Vora, and C. Khosla (2008) Overproduction of free fatty acids in E. Coli: Implications for biodiesel production. Metab. Eng. 10: 333–339.CrossRefGoogle Scholar
  34. 34.
    Mayer, K. M. and J. Shanklin (2007) Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformaticsguided approach. BMC Plant Biol. 7: 1–11.CrossRefGoogle Scholar
  35. 35.
    Rude, M. A. and A. Schirmer (2009) New microbial fuels: a biotech perspective. Curr. Opin. Microbiol. 12: 274–281.CrossRefGoogle Scholar
  36. 36.
    Steen, E. J., Y. Kang, G. Bokinsky, Z. Hu, A. Schirmer, A. McClure, S. B. del Cardayre, and J. D. Keasling (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: 559–562.CrossRefGoogle Scholar
  37. 37.
    Martin, V. J. J., D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796–802.CrossRefGoogle Scholar
  38. 38.
    Ro, D. K., E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Y. Chang, S. T. Withers, Y. Shiba, R. Sarpong, and J. D. Keasling (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943.CrossRefGoogle Scholar
  39. 39.
    Withers, S. T., S. S. Gottlieb, B. Lieu, J. D. Newman, and J. D. Keasling (2007) Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol. 73: 6277–6283.CrossRefGoogle Scholar
  40. 40.
    Song, L. S. (2006) A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E,E-farnesol. Appl. Biochem. Biotechnol. 128: 149–157.CrossRefGoogle Scholar
  41. 41.
    Martin, D. M., J. Faldt, and J. Bohlmann (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 135: 1908–1927.CrossRefGoogle Scholar
  42. 42.
    Renninger, N. S. and D. J. McPhee (2008) Fuel compositions including farnesane and farnesene derivatives and methods of making and using same. WO2008-045555.Google Scholar
  43. 43.
    Hiroko Tsuruta, C. J. P., D. Eng, J. R. Lenihan, T. Horning, L. C. Anthony, R. Regentin, J. D. Keasling, N. S. Renninger, and J. D. Newman (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE. 4: e4489.CrossRefGoogle Scholar
  44. 44.
    Atsumi, S., A. F. Cann, M. R. Connor, C. R. Shen, K. M. Smith, M. P. Brynildsen, K. J. Y. Chou, T. Hanai, and J. C. Liao (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10: 305–311.CrossRefGoogle Scholar
  45. 45.
    Atsumi, S. and J. C. Liao (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 19: 414–419.CrossRefGoogle Scholar
  46. 46.
    Inui, M., M. Suda, S. Kimura, K. Yasuda, H. Suzuki, H. Toda, S. Yamamoto, S. Okino, N. Suzuki, and H. Yukawa (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77: 1305–1316.CrossRefGoogle Scholar
  47. 47.
    Steen, E. J., R. Chan, N. Prasad, S. Myers, C. J. Petzold, A. Redding, M. Ouellet, and J. D. Keasling (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. doi: 10.1186/1475-2859-7-36.Google Scholar
  48. 48.
    Bowles, L. K. and W. L. Ellefson (1985) Effects of Butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 50: 1165–1170.Google Scholar
  49. 49.
    Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. Kim, and K. S. Jung (2008) Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101: 209–228.CrossRefGoogle Scholar
  50. 50.
    Atsumi, S., T. Hanai, and J. C. Liao (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86–89.CrossRefGoogle Scholar
  51. 51.
    Connor, M. R. and J. C. Liao (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr. Opin. Biotechnol. 20: 307–315.CrossRefGoogle Scholar
  52. 52.
    Ghim, C.-M. and E. Almaas (2008) Genetic noise control via protein oligomerization. BMC Sys. Biol. 2:94.CrossRefGoogle Scholar
  53. 53.
    Ghim, C.-M. and E. Almaas (2009) Two-component genetic switch as a synthetic module with tunable stability. Phys. Rev. Lett. 102:023145.Google Scholar
  54. 54.
    Keasling, J. D. and H. Chou (2008) Metabolic engineering delivers next-generation biofuels. Nat. Biotechnol. 26: 298–299.CrossRefGoogle Scholar
  55. 55.
    Warnecke, F., P. Luginbuhl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege, M. Cayouette, A. C. McHardy, G. Djordjevic, N. Aboushadi, R. Sorek, S. G. Tringe, M. Podar, H. G. Martin, V. Kunin, D. Dalevi, J. Madejska, E. Kirton, D. Platt, E. Szeto, A. Salamov, K. Barry, N. Mikhailova, N. C. Kyrpides, E. G. Matson, E. A. Ottesen, X. N. Zhang, M. Hernandez, C. Murillo, L. G. Acosta, I. Rigoutsos, G. Tamayo, B. D. Green, C. Chang, E. M. Rubin, E. J. Mathur, D. E. Robertson, P. Hugenholtz, and J. R. Leadbetter (2007) Metagenomic and functional analysis of hindgut microbiota of a woodfeeding higher termite. Nature 450: 560–565.CrossRefGoogle Scholar
  56. 56.
    Holzman, D. C. (2008) The carbon footprint of biofuels: can we shrink it down to size in time? Environ. Health Perspect. 116: A246–A252.CrossRefGoogle Scholar
  57. 57.
    Posfai, G., G. Plunkett, T. Feher, D. Frisch, G. M. Keil, K. Umenhoffer, V. Kolisnychenko, B. Stahl, S. S. Sharma, M. de Arruda, V. Burland, S. W. Harcum, and F. R. Blattner (2006) Emergent properties of reducedgenome Escherichia coli. Science 312: 1044–1046.CrossRefGoogle Scholar
  58. 58.
    Lartigue, C., J. I. Glass, N. Alperovich, R. Pieper, P. P. Parmar, C. A. Hutchison, H. O. Smith, and J. C. Venter (2007) Genome transplantation in bacteria: Changing one species to another. Science 317: 632–638.CrossRefGoogle Scholar
  59. 59.
    Alper, H., J. Moxley, E. Nevoigt, G. R. Fink, and G. Stephanopoulos (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565–1568.CrossRefGoogle Scholar
  60. 60.
    Brynildsen, M. P. and J. C. Liao (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol. Syst. Biol. 5: 227.CrossRefGoogle Scholar
  61. 61.
    Kristensen, J. B., C. Felby, and H. Jorgensen (2009) Determining yields in high solids enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 156: 557–562.CrossRefGoogle Scholar
  62. 62.
    Savage, D. F., J. Way, and P. A. Silver (2008) Defossiling fuel: How synthetic biology can transform biofuel production. ACS Chem. Biol. 3: 13–16.CrossRefGoogle Scholar
  63. 63.
    Bhalerao, K. D. (2009) Synthetic gene networks: the next wave in biotechnology? Trends Biotechnol. 27: 368–374.CrossRefGoogle Scholar
  64. 64.
    Voigt, C. A. (2006) Genetic parts to program bacteria. Curr. Opin. Biotechnol. 17: 548–557.CrossRefGoogle Scholar
  65. 65.
    Ellis, T., X. Wang, and J. J. Collins (2009) Diversitybased, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27: 465–471.CrossRefGoogle Scholar
  66. 66.
    Andrianantoandro, E., S. Basu, D. K. Karig, and R. Weiss (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2: 2006.0028. doi: 10.1038/msb4100073.CrossRefGoogle Scholar
  67. 67.
    Weibel, D. B., W. R. DiLuzio, and G. M. Whitesides (2007) Microfabrication meets microbiology. Nat. Rev. Microbiol. 5: 209–218.CrossRefGoogle Scholar
  68. 68.
    Gulati, S., V. Rouilly, X. Z. Niu, J. Chappell, R. I. Kitney, J. B. Edel, P. S. Freemont, and A. J. Demello (2009) Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 6: s493–s506.CrossRefGoogle Scholar
  69. 69.
    Ingham, C. J., A. Sprenkels, J. Bomer, D. Molenaar, A. van den Berg, J. Vlieg, and W. M. de Vos (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc. Natl. Acad. Sci. USA 104: 18217–18222.CrossRefGoogle Scholar
  70. 70.
    Harris, T. D., P. R. Buzby, H. Babcock, E. Beer, J. Bowers, I. Braslavsky, M. Causey, J. Colonell, J. Dimeo, J. W. Efcavitch, E. Giladi, J. Gill, J. Healy, M. Jarosz, D. Lapen, K. Moulton, S. R. Quake, K. Steinmann, E. Thayer, A. Tyurina, R. Ward, H. Weiss, and Z. Xie (2008) Single-molecule DNA sequencing of a viral genome. Science 320: 106–109.CrossRefGoogle Scholar
  71. 71.
    Ibach, J. and S. Brakmann (2009) Sequencing single DNA molecules in real time. Angew. Chem. Int. Ed. 48: 4683–4685.CrossRefGoogle Scholar
  72. 72.
    Gupta, P. K. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26: 602–611.CrossRefGoogle Scholar
  73. 73.
    Kong, D. S., P. A. Carr, L. Chen, S. G. Zhang, and J. M. Jacobson (2007) Parallel gene synthesis in a microfluidic device. Nucleic Acids Res. 35: e61.CrossRefGoogle Scholar
  74. 74.
    Pettersson, E., J. Lundeberg, and A. Ahmadian (2009) Generations of sequencing technologies. Genomics 93: 105–111.CrossRefGoogle Scholar
  75. 75.
    Tian, J. D., H. Gong, N. J. Sheng, X. C. Zhou, E. Gulari, X. L. Gao, and G. Church (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432: 1050–1054.CrossRefGoogle Scholar
  76. 76.
    Kim, H. J., J. Q. Boedicker, J. W. Choi, and R. F. Ismagilov (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105: 18188–18193.CrossRefGoogle Scholar
  77. 77.
    Kim, T., M. Pinelis, and M. M. Maharbiz (2009) Generating steep shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11: 65–73.CrossRefGoogle Scholar
  78. 78.
    Liu, W. S., H. J. Kim, E. M. Lucchetta, W. B. Du, and R. F. Ismagilov (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9: 2153–2162.CrossRefGoogle Scholar
  79. 79.
    Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti (2006) Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103: 2480–2487.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cheol-Min Ghim
    • 1
    • 2
  • Taesung Kim
    • 1
    • 3
  • Robert J. Mitchell
    • 1
    • 4
  • Sung Kuk Lee
    • 1
    • 2
  1. 1.School of Nano-Biotechnology and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  2. 2.School of Energy EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  3. 3.School of Mechanical and Advanced Materials EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  4. 4.School of Urban and Environmental EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea

Personalised recommendations