Biotechnology and Bioprocess Engineering

, Volume 15, Issue 1, pp 86–102 | Cite as

The past, present, and future trends of biosorption

  • Donghee Park
  • Yeoung-Sang Yun
  • Jong Moon ParkEmail author


The discovery and further development of biosorption phenomena provide a basis for a whole new technology aimed at the removal of various pollutants or the recovery of valuable resources from aqueous systems. Today, biosorption is one of the main components of environmental and bioresource technology. Since the status of scientific development of a technology can be reflected through analyses of the literatures pertaining to it, in this review, we qualitatively examine almost all aspects of biosorption research. A range of subjects are covered, including the initial history, raw materials, mechanisms, instrumental tools, process factors, modification and immobilization methods, recovery and regeneration, continuous processes, commercial application, and modeling studies of biosorption. Finally, we summarized the important considerations of the current research on biosorption, as well as the suggestions for its future directions. We believe that this review will prove to be useful for scientists and engineers in the performance of their research into biosorption.


adsorbent biosorbent biosorption heavy metals dyes precious metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krishnani, K. K. and S. Ayyappan (2006) Heavy metals remediation of water using plants and lignocellulosic agrowastes. Rev. Environ. Contam. Toxicol. 188: 59–84.CrossRefGoogle Scholar
  2. 2.
    Vijayaraghavan, K. and Y. -S. Yun (2008) Bacterial biosorbents and biosorption. Biotechnol. Adv. 26: 266–291.CrossRefGoogle Scholar
  3. 3.
    Hai, F. I., K. Yamamoto, and K. Fukushi (2007) Hybrid treatment systems for dye wastewater. Crit. Rev. Environ. Sci. Technol. 37: 315–377.CrossRefGoogle Scholar
  4. 4.
    Crini, G. (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30: 38–70.CrossRefGoogle Scholar
  5. 5.
    Crini, G. (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97: 1061–1085.CrossRefGoogle Scholar
  6. 6.
    Vieira, R. H. S. F. and B. Volesky (2000) Biosorption: a solution to pollution? Int. Microbiol. 3: 17–24.Google Scholar
  7. 7.
    Volesky, B. (2007) Biosorption and me. Water Res. 41: 4017–4029.CrossRefGoogle Scholar
  8. 8.
    Ahmaruzzaman, Md. (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interf. Sci. 143: 48–67.CrossRefGoogle Scholar
  9. 9.
    Babel, S. and T. A. Kurniawan (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97: 219–243.CrossRefGoogle Scholar
  10. 10.
    Bailey, S. E., T. J. Olin, R. M. Bricka, and D. D. Adrian (1999) A review of potentially low-cost sorbents for heavy metals. Water Res. 33: 2469–2479.CrossRefGoogle Scholar
  11. 11.
    Bhatnagar, A. and A. K. Minocha (2006) Conventional and non-conventional adsorbents for removal of pollutants from water — a review. Indian J. Chem. Technol. 13: 203–217.Google Scholar
  12. 12.
    Kurniawan, T. A., G. Y. S. Chan, W.-H. Lo, and S. Bebel (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci. Total Environ. 366: 409–426.CrossRefGoogle Scholar
  13. 13.
    Lin, S.-H. and R.-S. Juang (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J. Environ. Manage. 90: 1336–1349.CrossRefGoogle Scholar
  14. 14.
    Mohan, D. and C. U. Pittman, Jr. (2006) Activated carbon and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137: 762–811.CrossRefGoogle Scholar
  15. 15.
    Mohan, D. and C. U. Pittman, Jr. (2007) Arsenic removal from water/wastewater using adsorbents-a critical review. J. Hazard. Mater. 142: 1–53.CrossRefGoogle Scholar
  16. 16.
    Aksu, Z. (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40: 997–1026.CrossRefGoogle Scholar
  17. 17.
    Sağ, Y. and T. Kutsal (2001) Recent trends in the biosorption of heavy metals: a review. Biotechnol. Bioprocess Eng. 6: 376–385.CrossRefGoogle Scholar
  18. 18.
    McCallan, S. E. A. and L. P. Miller (1956) Innate toxicity of fungicides. pp. 107–134. In: R. L. Metcalf (ed.). Advanced in Pest Control Research: Vol. II. Interscience, NY, USA.Google Scholar
  19. 19.
    Muraleedharan, T. R., L. Iyengar, and C. Venkobachar (1991) Biosorption: an attractive alternative for metal removal and recovery. Curr. Sci. 61: 379–385.Google Scholar
  20. 20.
    John Wase, D. A. and C. F. Forster (1997) Biosorbents for metal ions. CRC Press, Florida, USA.Google Scholar
  21. 21.
    Volesky, B. (1990) Biosorption of heavy metals. CRC Press, Florida, USA.Google Scholar
  22. 22.
    Volesky, B. (2004) Sorption and biosorption. BV-Sorbex Inc., Quebec, Canada.Google Scholar
  23. 23.
    Modak, J. M. and K. A. Natarajan (1995) Biosorption of metals using nonliving biomass-a review. Miner. Metall. Proc. 12: 189–196.Google Scholar
  24. 24.
    Ullrich, A. H. and M.W. Smith (1951) The biosorption process of sewage and waste treatment. Sewage Ind. Wastes 23: 1248–1253.Google Scholar
  25. 25.
    Stasiak, M. (1969) Application of biosorption process for renovation of waste waters at chemical industry, Przemysl Chemiczny 48: 426–428.Google Scholar
  26. 26.
    Ames Crosta Mills & Company Ltd. and J. R. Sanderson (1973) Apparatus for the biological treatment of waste water by the biosorption process. Great Britain Patent GB1324358.Google Scholar
  27. 27.
    Ruchoft, C. C. (1949) The possibilities of disposal of radio active wastes by biological treatment methods. Sewage Works J. 21: 877–883.Google Scholar
  28. 28.
    Volesky, B. and M. Tsezos (1982) Separation of uranium by biosorption. US Patent US04320093.Google Scholar
  29. 29.
    Goodman, G. T. and T. M. Roberts (1971) Plants and soils as indicators of metals in the air. Nature 231: 287–292.CrossRefGoogle Scholar
  30. 30.
    Neufeld, R. D. and E. R. Hermann (1975) Heavy metal removal by acclimated activated sludge. J. Water Pollut. Control Fed. 47: 310–329.Google Scholar
  31. 31.
    Friedman, B. A. and P. R. Dugan (1968) Concentration and accumulation of metallic ions by the bacterium Zoogloea. Dev. Ind. Microbiol. 9: 381–388.Google Scholar
  32. 32.
    Nakajima, A., T. Horikoshi, and T. Sakaguchi (1982) Studies on the accumulation of heavy metal elements in biological systems. J. Appl. Microbiol. 16: 88–91.CrossRefGoogle Scholar
  33. 33.
    Sakaguchi, T., A. Nakajima, and T. Horikoshi (1978) Studies on the accumulation of heavy metal elements in biological systems: VI. Uptake of uranium from sea water by microalgae. J. Ferment. Technol. 56: 561–565.Google Scholar
  34. 34.
    Gould, M. S. and E. J. Genetelli (1984) Effects of competition on heavy metal binding by anaerobically digested sludges. Water Res. 18: 123–126.CrossRefGoogle Scholar
  35. 35.
    Chiu, Y., M. Asce, and J. E. Zajic (1976) Biosorption isotherm for uranium recovery. J. Environ. Eng. ASCE 102: 1109–1111.Google Scholar
  36. 36.
    Tsezos, M. and B. Volesky (1981) Biosorption of uranium and thorium. Biotechnol. Bioeng. 23: 583–604.CrossRefGoogle Scholar
  37. 37.
    Steen, W. C. and S. W. Karickhoff (1981) Biosorption of hydrophobic organic pollutants by mixed microbial populations. Chemosphere 10: 27–32.CrossRefGoogle Scholar
  38. 38.
    Tsezos, M. (2001) Biosorption of metals: the experience accumulated and the outlook for technology development. Hydrometallurgy 59: 241–243.CrossRefGoogle Scholar
  39. 39.
    Gadd, G. M. (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46: 834–840.CrossRefGoogle Scholar
  40. 40.
    Malik, A. (2004) Metal bioremediation through growing cells. Environ. Int. 30: 261–278.CrossRefGoogle Scholar
  41. 41.
    Kratochvil, D. and B. Volesky (1998) Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291–300.CrossRefGoogle Scholar
  42. 42.
    Volesky, B. (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 14: 291–302.CrossRefGoogle Scholar
  43. 43.
    Volesky, B. and Z. R. Holan (1995) Biosorption of heavy metals. Biotechnol. Progr. 11: 235–250.CrossRefGoogle Scholar
  44. 44.
    Ahluwalia, S. S. and D. Goyal (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98: 2243–2257.CrossRefGoogle Scholar
  45. 45.
    Bishnoi, N. R. and A. Garima (2005) Fungus-an alternative for bioremediation of heavy metal containing wastewater: a review. J. Sci. Ind. Res. 64: 93–100.Google Scholar
  46. 46.
    Gupta, R. and H. Mohapatra (2003) Microbial biomass: an economical alternative for removal of heavy metals from waste water. Indian J. Exp. Biol. 41: 945–966.Google Scholar
  47. 47.
    Kaushik, P. and A. Malik (2009) Fungal dye decolourization: recent advances and future potential. Environ. Int. 35: 127–141.CrossRefGoogle Scholar
  48. 48.
    Lodeiro, P., R. Herrero, and M. E. Sastre de Vicente (2006) Thermodynamic and kinetic aspects on the biosorption of cadmium by low cost materials: a review. Environ. Chem. 3: 400–418.CrossRefGoogle Scholar
  49. 49.
    Mack, C., B. Wilhelmi, J. R. Duncan, and J. E. Burgess (2007) Biosorption of precious metals. Biotechnol. Adv. 25: 264–271.CrossRefGoogle Scholar
  50. 50.
    McHale, A. P. and S. McHale (1994) Microbial biosorption of metals: potential in the treatment of metal pollution. Biotechnol. Adv. 12: 647–652.CrossRefGoogle Scholar
  51. 51.
    Mehta, S. K. and J. P. Gaur (2005) Use of algae for removing heavy metals ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25: 113–152.CrossRefGoogle Scholar
  52. 52.
    Sağ, Y. (2001) Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Separ. Purif. Method 30: 1–48.CrossRefGoogle Scholar
  53. 53.
    Veglio, F. and F. Beolchini (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44: 301–316.CrossRefGoogle Scholar
  54. 54.
    Wan Ngah, W. S. and M. A. K. M. Hanafiah (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technol. 99: 3935–3948.CrossRefGoogle Scholar
  55. 55.
    Wilde, E. W. and J. R. Benemann (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 11: 781–812.CrossRefGoogle Scholar
  56. 56.
    Romera, E., F. González, A. Ballester, M. L. Blázquez, and J. A. Muñoz (2006) Biosorption with algae: a statistical review. Cri. Rev. Biotechnol. 26: 223–235.CrossRefGoogle Scholar
  57. 57.
    Varma, A. J., S. V. Deshpande, and J. F. Kennedy (2004) Metal complexation by chitosan and its derivatives: a review. Carbohyd. Polym. 55: 77–93.CrossRefGoogle Scholar
  58. 58.
    Gerente, C., V. K. C. Lee, P. Le Cloirec, and G. MaKay (2007) Application of chitosan for the removal of metals from wastewaters by adsorption — mechanisms and models review. Crit. Rev. Environ. Sci. Technol. 37: 41–127.CrossRefGoogle Scholar
  59. 59.
    Demirbas, A. (2008) Heavy metal adsorption onto agro-based waste materials: a review. J. Hazard. Mater. 157: 220–229.CrossRefGoogle Scholar
  60. 60.
    Johnson, T. A., N. Jain, H. C. Joshi, and S. Prasad (2008) Agricultural and agro-processing wastes as low cost adsorbents for metal removal from wastewater: a review. J. Sci. Ind. Res. 67: 647–658.Google Scholar
  61. 61.
    Mahvi, A. H. (2008) Application of agricultural fibers in pollution removal from aqueous solution, Int. J. Environ. Sci. Tech. 5: 275–285.Google Scholar
  62. 62.
    Sud, D., G. Mahajan, and M. P. Kaur (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review. Bioresour. Technol. 99: 6017–6027.CrossRefGoogle Scholar
  63. 63.
    Swami, D. and D. Buddhi (2006) Removal of contaminants from industrial wastewater through various non-conventional technologies: a review. Int. J. Environ. Pollut. 27: 324–346.Google Scholar
  64. 64.
    O’Connell, D. W., C. Birkinshaw, and T. F. O’Dwyer (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour. Technol. 99: 6709–6724.CrossRefGoogle Scholar
  65. 65.
    McKay, G., Y. S. Ho, and J. C. Y. Ng (1999) Biosorption of copper from waste waters: a review. Separ. Purif. Method 28: 87–125.CrossRefGoogle Scholar
  66. 66.
    Popa, K. and A. Cecal (2003) A review on biosorption of uranyl ions. Environ. Eng. Manage. J. 2: 69–75.Google Scholar
  67. 67.
    Andrès, Y., A. C. Texier, and P. Le Cloirec (2003) Rare earth elements removal by microbial biosorption: a review. Environ. Technol. 24: 1367–1375.CrossRefGoogle Scholar
  68. 68.
    Wang, J. and C. Chen (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 24: 427–451.CrossRefGoogle Scholar
  69. 69.
    Pal, A. and A. K. Paul (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J. Microbiol. 48: 49–64.CrossRefGoogle Scholar
  70. 70.
    Gupta, R., P. Ahuja, S. Khan, R. K. Saxena, and H. Mohapatra (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr. Sci. 78: 967–973.Google Scholar
  71. 71.
    Crini, G. and P.-M. Badot (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal by aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33: 399–447.CrossRefGoogle Scholar
  72. 72.
    Chandana Lakshmi, M. V. V., V. Sridevl, and S. K. Beebl (2007) A review on biosorption of heavy metals from industrial effluents. Indian J. Environ. Prot. 27: 545–553.Google Scholar
  73. 73.
    Ioannidou, O. and A. Zabaniotou (2007) Agricultural residues as precursors for activated carbon production-a review. Renew. Sust. Energ. Rev. 11: 1966–2005.CrossRefGoogle Scholar
  74. 74.
    Suhas, P., J. M. Carrott, and M. M. L. Ribeiro Carrott (2007) Lignin — from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98: 2301–2312.CrossRefGoogle Scholar
  75. 75.
    Gadd, G. M. and C. White (1993) Microbial treatment of metal pollution — a working biotechnology? Trends Biotechnol. 11: 353–359.CrossRefGoogle Scholar
  76. 76.
    Kapoor, A. and T. Viraraghavan (1995) Fungal biosorption — an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53: 195–206.CrossRefGoogle Scholar
  77. 77.
    Atkinson, B. W., F. Bux, and H. C. Kasan (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24: 129–135.Google Scholar
  78. 78.
    Gavrilescu, M. (2004) Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 4: 219–232.CrossRefGoogle Scholar
  79. 79.
    Volesky, B. (1987) Biosorbents for metal recovery. Trends Biotechnol. 5: 96–101.CrossRefGoogle Scholar
  80. 80.
    Zouboulis, A. I., N. K. Lazaridis, and K. A. Matis (2008) The process of flotation: an efficient solid/liquid separation technique for biological materials. Int. J. Environ. Pollut. 32: 29–42.CrossRefGoogle Scholar
  81. 81.
    Zouboulis, A. I. and K. A. Matis (1997) Removal of metal ions from dilute solutions by sorptive flotation. Crit. Rev. Environ. Sci. Technol. 27: 195–235.CrossRefGoogle Scholar
  82. 82.
    Li, H., Z. Li, T. Liu, X. Xiao, Z. Peng, and L. Deng (2008) A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresour. Technol. 99: 6271–6279.CrossRefGoogle Scholar
  83. 83.
    Binupriya, A. R., M. Sathishkumar, D. Kavitha, K. Swaminathan, and S. E. Yun (2007) Aerated and rotated mode of decolorization of a textile dye solution by native and modified mycelial biomass of Trametes versiocolor. J. Chem. Technol. Biotechnol. 82: 350–359.CrossRefGoogle Scholar
  84. 84.
    Kuyucak, N. and B. Volesky (1989) Desorption of cadmium from algal biosorbent. Biotechnol. Bioeng. 33: 815–822.CrossRefGoogle Scholar
  85. 85.
    Ho, Y.-S. (2006) Review of second-order models for adsorption systems. J. Hazard. Mater. 136: 681–689.CrossRefGoogle Scholar
  86. 86.
    Liu, Y. and Y.-J. Liu (2008) Biosorption isotherms, kinetics, and thermodynamics. Sep. Purif. Technol. 61: 229–242.CrossRefGoogle Scholar
  87. 87.
    Volesky, B. (2003) Biosorption process simulation tools. Hydrometallurgy 71: 179–190.CrossRefGoogle Scholar
  88. 88.
    Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40: 1361–1403.CrossRefGoogle Scholar
  89. 89.
    Freundlich, H. (1907) Ueber die adsorption in Loesungen. Z. Phy. Chem. 57: 385–470.Google Scholar
  90. 90.
    Temkin, D. (1934) Die gas adsorption under nernstsche wärmesatz. Acta. Physicochima URSS 1: 36–52.Google Scholar
  91. 91.
    Dubinin, M. M. (1960) The potential theory of adsorption of gases and vapors for adsorbents with energeticcally non-uniform surface. Chem. Rev. 60: 235–266.CrossRefGoogle Scholar
  92. 92.
    Sips, R. (1948) On the structure of a catalyst surface. J. Chem. Phys. 16: 490–495.CrossRefGoogle Scholar
  93. 93.
    Redlich, O. and D. L. Peterson (1959) A useful adsorption isotherm. J. Phys. Chem. 63: 1024–1024.CrossRefGoogle Scholar
  94. 94.
    Radke, C. J. and J. M. Prausnitz (1972) Adsorption of organic solutions from dilute aqueous solution on activated carbon. Ind. Eng. Chem. Fund. 11: 445–451.CrossRefGoogle Scholar
  95. 95.
    Khan, A. R., A. Ataullah, and A. Al-Haddad (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J. Colloid Interf. Sci. 194: 154–165.CrossRefGoogle Scholar
  96. 96.
    Toth, J. (1971) State equations of the solid gas interface layer. Acta Chim. Acad. Sci. Hung. 69: 311–328.Google Scholar
  97. 97.
    Brunauer, S., P. H. Emmett, and E. Teller (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60: 309–319.CrossRefGoogle Scholar
  98. 98.
    Liu, Y. (2006) Some consideration on the Langmuir isotherm equation. Colloid Surf. A.: Physicochem. Eng. Aspects 274: 34–36.CrossRefGoogle Scholar
  99. 99.
    Lu, X. (2008) Comment on “Thermodynamic and isotherm studies of the biosorption of Cu(II), Pb(II), and Zn(II) by leaves of saltbush (Atriplex canescens)”. J. Chem. Thermodyn. 40: 739–740.CrossRefGoogle Scholar
  100. 100.
    Weber, W. J. and J. C. Morris (1963) Kinetics of adsorption on carbon solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89: 31–59.Google Scholar
  101. 101.
    Lagergren, S. (1898) Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakad. Handl. 224: 1–39.Google Scholar
  102. 102.
    Zeldowitsch, J. (1934) Über den mechanismus der katalytischen oxidation von CO an MnO2. Acta Physicochim. URSS 1: 364–449.Google Scholar
  103. 103.
    Liu, Y. and L. Shen (2008) A general rate law equation for biosorption. Biochem. Eng. J. 38: 390–394.CrossRefGoogle Scholar
  104. 104.
    Sağ, Y., A. Yalçuk, and T. Kutsal (2000) Mono and multi-component biosorption of heavy metal ions on Rhizopus arrhizus in a CFST. Process Biochem. 335: 787–799.CrossRefGoogle Scholar
  105. 105.
    Bohart, G. and E. Q. Adams (1920) Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 42: 523–544.CrossRefGoogle Scholar
  106. 106.
    Thomas, H. C. (1944) Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1664–1666.CrossRefGoogle Scholar
  107. 107.
    Wolborska, A. (1989) Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Res. 23: 85–91.CrossRefGoogle Scholar
  108. 108.
    Yoon, Y. H. and J. H. Nelson (1984) Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service time. Am. Ind. Hyg. Assoc. J. 45: 509–516.Google Scholar
  109. 109.
    Yan, G., T. Viraraghavan, and M. Chen (1999) A new model for heavy metal removal in a biosorption column. Adsorpt. Sci. Technol. 19: 25–43.CrossRefGoogle Scholar
  110. 110.
    Clark, R. M. (1987) Evaluating the cost and performance of field-scale granular activated carbon systems. Environ. Sci. Technol. 21: 573–580.CrossRefGoogle Scholar
  111. 111.
    Tien, C. (2007) Remarks on adsorption manuscripts received and declined: an editorial. Sep. Purif. Technol. 54: 277–278.CrossRefGoogle Scholar
  112. 112.
    Tien, C. (2008) Remarks on adsorption manuscripts revised and declined: an editorial. J. Hazard. Mater. 150: 2–3.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Donghee Park
    • 1
  • Yeoung-Sang Yun
    • 2
  • Jong Moon Park
    • 3
    Email author
  1. 1.Department of Environmental EngineeringKyungpook National UniversityDaeguKorea
  2. 2.Environmental Biotechnology National Research Lab, School of Chemical Engineering, Research Institute of Industrial TechnologyChonbuk National UniversityJeonjuKorea
  3. 3.Advanced Environmental Biotechnology Research Center, Department of Chemical Engineering, School of Environmental Science and EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations