Biotechnology and Bioprocess Engineering

, Volume 15, Issue 2, pp 254–260 | Cite as

Optimization of lipase production using differential evolution

Research Paper


Differential Evolution (DE) coupled with Response Surface Methodology (RSM) has been used for the optimization of extracellular lipolytic enzyme production by Rhizopus oryzae NRRL 3562 through sold state fermentation. The input space of the experimentally validated RSM-model was optimized using a novel Differential Evolution approach (DE), which works based on the natural selection and survival of the fittest concepts of the biological world. The maximum lipase activity of 96.52 U/gds was observed with the DE stated optimum values of 35.59°C, 1.50, 5.28, and 4.83 days for temperature, liquid to solid ratio, pH, and incubation time respectively. The optimal levels of control parameters namely number of population, generations, crossover operator, and mutation constant were equal to 20, 50, 0.6, and 0.20, respectively. The developed model and its optimization are generic in nature and thus appear to be useful for the design and scale-up of the extracellular lipase production by R. oryzae NRRL 3562 through solid state fermentation.


Optimization lipase solid state fermentation Rhizopus oryzae NRRL 3562 Differential Evolution (DE) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reetz, M. R. (2002) Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6: 145–150.CrossRefGoogle Scholar
  2. 2.
    Jaeger, K. E. and E. Thorsten (2002) Lipases for biotechnology. Curr. Opin. Biotech. 13: 390–397.CrossRefGoogle Scholar
  3. 3.
    Hasan, F., A. A. Shah, and A. Hameed (2006) Industrial applications of microbial lipases. Enz. Microb. Tech. 39: 235–251.CrossRefGoogle Scholar
  4. 4.
    Houde, A., A. Kademi, and D. Leblanc (2004) Lipases and their industrial applications: an overview. Appl. Biochem. Biotechnol. 118: 155–170.CrossRefGoogle Scholar
  5. 5.
    Tunga, R., B. Shrivastava, and R. Banerjee (2003) Purification and characterization of a protease from solid state cultures of Aspergillus parasiticus. Proc. Biochem. 38: 1553–1558.CrossRefGoogle Scholar
  6. 6.
    Mukherjee, G. and R. Banerjee (2004) Biosynthesis of tannase and gallic acid from tannin rich substrates by R. oryzae and Aspergillus foetidus. J. Basic Microbiol. 44: 42–48.CrossRefGoogle Scholar
  7. 7.
    Nigam, P. and D. Singh (1994) Solid-state (substrate) fermentation systems and their applications in biotechnology. J. Basic Microbiol. 34: 405–423.CrossRefGoogle Scholar
  8. 8.
    Iftikhar, T., N. Mubashir, A. Munazza, H. Ikram-ul, and I. R. Muhammad (2008) Maximization of intracellular lipase production in a lipase-overproducing mutant derivative of Rhizopus oligosporus DGM 31: A kinetic study. Food Technol. Biotechnol. 46: 402–412.Google Scholar
  9. 9.
    Shu, Y. S. and Y. Xu (2008) Solid-state fermentation for ‘wholecell synthetic lipase’ production from Rhizopus chinensis and identification of the functional enzyme. Proc. Biochem. 43: 219–224.CrossRefGoogle Scholar
  10. 10.
    Rodriguez, J. A., J. C. Mateos, J. Nungaray, V. González, T. Bhagnagar, S. Roussos, J. Cordova, and J. Baratti (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Proc. Biochem. 41: 2264–2269.CrossRefGoogle Scholar
  11. 11.
    Matsumoto, T., S. Takahashi, M. Ueda, A. Tanaka, H. Fukuda, and A. Kondo (2002) Preparation of high activity yeast whole cell bioctalysts by optimization of intracellular production of recombinant Rhizopus oryzae lipase. J. Mol. Catal. B: Enz. 17: 143–149.CrossRefGoogle Scholar
  12. 12.
    Hiol, A., M. D. Jonzo, N. Rugani, D. Druet, L. Sarda, and L. C. Comeau (2000) Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enz. Microb. Technol. 26: 421–430.CrossRefGoogle Scholar
  13. 13.
    Essamri, M., D. Valerie, and C. Louis (1998) Optimization of lipase production by Rhizopus oryzae and study on the stability of lipase activity in organic solvents. J. Biotechnol. 60: 97–103.CrossRefGoogle Scholar
  14. 14.
    Myers, R. H. and D. C. Montgomery (2005) Response surface methodology: process and product optimization using designed experiments. John Wiley and Sons, NY, USA.Google Scholar
  15. 15.
    Storn, R. and K. Price (1997) Differential Evolution-A simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global. Optim. 11: 341–359.CrossRefGoogle Scholar
  16. 16.
    Kumari, A., P. Mahapatra, V. K. Garlapati, and R. Banerjee (2008) Comparative study of thermostabilty and ester synthesis ability of free and immobilized lipases on cross linked silica gel. Bioproc. Biosyst. Eng. 31: 291–298.CrossRefGoogle Scholar
  17. 17.
    Kordel, M., B. Hofmann, D. Schomburg, and R. D. Schmid (1991) Extracellular lipase of Pseudomonas sp. strain ATCC-21808: purification, characterization, crystallization, and preliminary X-ray diffraction data. J. Bacteriol. 173: 4836–4841.Google Scholar
  18. 18.
    Montgomery, D. C. and G. C. Runger (2002) Applied Statistics and Probability for Engineers. John Wiley and Sons (Asia), Singapore.Google Scholar
  19. 19.
    Ul-haq, I., S. Idrees, and M. Ibrahim Rajoka (2002) Production of lipases by Rhizopus oligosporous by solid-state fermentation. Proc. Biochem. 37: 637–641.CrossRefGoogle Scholar
  20. 20.
    Cordova, J., M. Nemmaoui, M. Isma li-Alaoui, A. Morin, S. Roussos, M. Raimbault, and B. Benjilali (1998) Lipase production by solid state fermentation of olive cake and sugar cane bagasse. J. Mol. Catal. B: Enz. 5: 75–78.CrossRefGoogle Scholar
  21. 21.
    Kempka, A. P., N. L. Lipke, T. L. F. Pinheiro, S. Menoncin, H. Treichel, D. M. G. Freire, M. D. Luccio, and D. D. Oliveira (2008) Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solidstate fermentation. Bioproc. Biosyst. Eng. 31:119–125.CrossRefGoogle Scholar
  22. 22.
    Gombert, A. K., A. L. Pinto, L. R. Castilho, and D. M. G. Freire (1999) Lipase production by Penicillium restrictum in solidstate fermentation using babassu oil cake as substrate. Proc. Biochem. 35: 85–90.CrossRefGoogle Scholar
  23. 23.
    Sun, S.Y. and Y. Xu (2008) Solid-state fermentation for ‘wholecell synthetic lipase’ production from Rhizopus chinensis and identification of the functional enzyme. Proc. Biochem. 43:219–224.CrossRefGoogle Scholar
  24. 24.
    Castilho, L. R., C. M. S. Polato, E. A. Baruque, G. L. Sant’Anna Jr., and D. M. G. Freire (2000) Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem. Eng. J. 4: 239–247.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations