Biotechnology and Bioprocess Engineering

, Volume 15, Issue 2, pp 246–253

Isolation, purification, and characterization of novel fengycin S from Bacillus amyloliquefaciens LSC04 degrading-crude oil

  • Lee Sang-Cheol
  • Sun-Hee Kim
  • In-Hye Park
  • Soo-Yeol Chung
  • M. Subhosh Chandra
  • Choi Yong-Lark
Research Paper


In this study, a biosurfactant-producing bacterial strain was isolated from oil-contaminated soil on the basis of its ability to degrade crude oil and tributyrin (C4:0). LSC04 was identified as Bacillus amyloliquefaciens LSC04 via 16S rRNA gene analysis and partial gyrA gene sequence analysis. The biosurfactants were purified and structural analysis results showed that B. amyloliquefaciens LSC04 generated a lipopeptide biosurfactant. Two main ions of 1,086.9 and 1,491.2 were measured via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The m/z 1,491.2 was shown to correspond to the lipopeptide fengycin B, but the m/z 1,086.9 ion did not correspond to any known lipopeptide. As constituents of the peptides and the lipophilic portion of the m/z 1,491.2; 10 amino acids (Ile-Tyr-Gln-Pro-Val-Glu-Ser-Tyr-Orn-Glu); and β-hydroxy-C17 fatty acid were identified via ESI-MS/MS. Structurally, the lipopeptide of a molecular mass of 1,491.2 differed from fengycin B and fengycin A by a substitution of serine for the threonine residue in position 4, and the amino acid residue in position 6 was equal to that of fengycin A. The major compound, which had a molecular mass of 1,491.2 Da was designated “Fengycin S”.


biosurfactant Bacillus amyloliquefaciens fengycin lipopeptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kretschner, A., H. Bock, and F. Wagnee (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane. Appl. Environ. Microbiol. 44: 864–870.Google Scholar
  2. 2.
    Cho, W. S., E. H. Lee, E. H. Shim, J. S. Kim, H. W. Ryu, and K. S. Cho (2005) Bacterial communities of biofilms sampled from seepage groundwater contaminated with petroleum oil. J. Microbiol. Biotechnol. 15: 952–964.Google Scholar
  3. 3.
    Baek, K. H., H. S. Kim, S. H. Moon, I. S. Lee, H. M. Oh, and B. D. Yoon (2004) Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 15: 901–905.Google Scholar
  4. 4.
    Banat, I. M (1995) Characterization of biosurfactants and their use in pollution removal-state of the art. Acta Biotechnol. 15: 251–267.CrossRefGoogle Scholar
  5. 5.
    Desai, J. D. and I. M. Banat (1997) Microbial production of surfactants and their commercial potential. Micrbiol. Mol. Biol. Rev. 61: 47–64.Google Scholar
  6. 6.
    Zajic, J. E., H. Guignard, and D. F. Gerson (1977) Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclatus. Biotechnol. Bioeng. 19: 1303–1302.CrossRefGoogle Scholar
  7. 7.
    Rosenberg, E. and E. Z. Ron (1999) High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154–162.CrossRefGoogle Scholar
  8. 8.
    Kuiper, I., E. L. Lagendijk, R. Pickford, J. P. Derrick, G. E. Lamers, J. E. T. Oates, B. J. Lugtenberg, and G. V. Bloemberg (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol. Microbiol. 51: 97–113.CrossRefGoogle Scholar
  9. 9.
    Roongsawang, N., J. Thaniyavarn, S. Thaniyavarn, T. Kameyama, M. Haruki, T. Imanaka, M. Moriawa, and S. Kanaya (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6: 499–506.CrossRefGoogle Scholar
  10. 10.
    Steller, S. and J. Vater (2000) Purification of the fengycin synthetase multienzyme system from Bacillus subtilis b213. J. Chromatogr. B: Biomed. Sci. Appl. 737: 267–275.CrossRefGoogle Scholar
  11. 11.
    Hou, X., S. M. Boyetchko, M. Brkic, D. Olson, A. R. S. Ross, and D. D. Hegedus (2006) Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia scelerotiorum. Appl. Microbiol. Biotechnol. 72: 644–653.CrossRefGoogle Scholar
  12. 12.
    Ongena, M., P. Jacques, Y. Toure, J. Destain, A. Jabrane, and P. Thonart (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69: 29–38.CrossRefGoogle Scholar
  13. 13.
    Steller, S., D. Vollenbroich, F. Leenders, T. Stein, B. Conrad, J. Hofemeister, P. Jacques, and J. Vater (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem. Biol. 6: 31–41.CrossRefGoogle Scholar
  14. 14.
    Vater, J., B. Kablitz, C. Wilde, P. Franke, N. Mehta, and S. S. Cameotra (2002) Matrix-assisted laser desertion ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 68: 6210–6219.CrossRefGoogle Scholar
  15. 15.
    Wang, J., J. Liu, X. Wang, J. Yao, and Z. Yu (2004) Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett. Appl. Microbiol. 39: 98–102.CrossRefGoogle Scholar
  16. 16.
    Cutting, S. M. and H. P. B. Vander (1990) Genetic analysis. pp. 27–74. In: C. R. Harwood and S. M. Cutting (eds). Molecular Biological Methods for Bacillus. John Wiley & Sons, Ltd., NJ, USA.Google Scholar
  17. 17.
    Magaritis, A., K. Kennedy, J. E. Zajic, and D. F. Gerson (1979) Biosurfactant production by Nocardia erythropolis. Dev. Ind. Microbiol. 20: 623–630.Google Scholar
  18. 18.
    Calvo, C., C. F. Martinez, A. Mota, V. Bejar, and E. Quesada (1998) Effect of cations, pH and sulfate content on the viscosity and emusifying activity on the Halomonas eurithalina. J. Ind. Microbiol. Biotechnol. 20: 205–209.CrossRefGoogle Scholar
  19. 19.
    Cirigliano, M. C. and G. M. Carman (1985) Purification and characterization of liposan, a bioemusifier from Candida lipolytica. Appl. Environ. Microbiol. 50: 846–850.Google Scholar
  20. 20.
    Eppard, M. W., E. Krrumbein, C. Kock, E. Rhiel, J. T. Sraley, and E. Stackebrandt (1996) Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monuments surfaces. Arch. Microbiol. 166: 12–22.CrossRefGoogle Scholar
  21. 21.
    Gray, J. P. and R. P. Herwig (1996) Phylogenetic analysis of the bacterial of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62: 4049–4059.Google Scholar
  22. 22.
    Kuske, C. R., S. M. Bams, and J. D. Busch (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl. Environ. Microbiol. 63: 3614–3621.Google Scholar
  23. 23.
    Siefert, J. L., S. M. Larios, L. K. Nakamura, R. A. Slepecky, J. H. Paul, E. R. Moore, G. E. Fox, and P. J. Jurtshuk (2000) Phylogeny of marine Bacillus isolates from the Gulf of Mexico. Curr. Microbiol. 41: 84–88.CrossRefGoogle Scholar
  24. 24.
    Wise, W. G., J. V. McArthur, and L. J. Skimkets (1997) Bacterial diversity of a Carolima bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl. Environ. Micrbiol. 63: 1505–1514.Google Scholar
  25. 25.
    Reva, O. N., C. Dixelius, J. Meijer, and F. G. Priest (2004) Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Ecol. Microbiol. 48: 249–259.CrossRefGoogle Scholar
  26. 26.
    Chun, J. and K. S. Bae (2000) Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequence. Antonie van Leewenhoek 78: 123–127.CrossRefGoogle Scholar
  27. 27.
    Lee, S. C., Y. J. Jung, J. S. Yoo, Y. S. Cho, I. H. Cha, and Y. L. Choi (2002) Characteristic of biosurfactants produced by Bacillus sp. LSC11. Kor. J. Life Sci. 12: 745–751.Google Scholar
  28. 28.
    Kim, S. H., E. J. Lim, S. O. Lee, J. D. Lee, and T. H. Lee (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol. Appl. Biochem. 31: 249–253.CrossRefGoogle Scholar
  29. 29.
    Suk, W. S., H. J. Son, G. Lee, and S. J. Lee (1999) Purification and characterization of biosurfactants produced by Pseudomonas sp. SW 1. J. Microbiol. Biotechnol. 9: 56–61.Google Scholar
  30. 30.
    Yakimov, M. M., K. N. Timmis, V. Wray, and H. L. Fredrickson (1995) Characterisation of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61: 1706–1713.Google Scholar
  31. 31.
    Batista, S. B., A. H. Mounteer, F. R. Amorim, and M. R. Totola (2005) Isolation and characterization of biosurfactant/bioemusifier producing bacteria from petroleum contaminated sites. Bioresour. Technol. 97: 868–875.CrossRefGoogle Scholar
  32. 32.
    Kim, S. H., S. C. Lee, I. H. Park, J. S. Yoo, W. H. Joo, C. W. Hwang, and Y. L. Choi (2005) Isolation and characterization of biosurfactant from Bacillus atrophaeus DYL-130. Kor. J. Life Sci. 15: 679–684.Google Scholar
  33. 33.
    Lee, S. C., J. S. Yoo, S. H. Kim, S. Y. Chung, C. W. Hwang, W. H. Joo, and Y. L. Choi (2006) Production and characterization of lipopeptide biosurfactant from Bacillus subtilis A8-8. J. Microbiol. Biotechnol. 16: 716–723.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lee Sang-Cheol
    • 1
  • Sun-Hee Kim
    • 1
  • In-Hye Park
    • 1
  • Soo-Yeol Chung
    • 2
  • M. Subhosh Chandra
    • 1
  • Choi Yong-Lark
    • 1
  1. 1.Department of Biotechnology, College of Natural Resources and Life ScienceDong-A UniversityBusanKorea
  2. 2.Department of Food ScienceDong-Ju CollegeBusanKorea

Personalised recommendations