Biotechnology and Bioprocess Engineering

, Volume 14, Issue 4, pp 443–449 | Cite as

Polyaniline based catalase biosensor for the detection of hydrogen peroxide and azide

  • Ravindra P. Singh
  • Da-Yeon Kang
  • Byung-Keun Oh
  • Jeong-Woo ChoiEmail author


The CAT/PANi/ITO bioelectrode has been prepared as a catalase biosensor and shows response for monitoring not only of H2O2 but also azide. The sensor exhibited an excellent response to the H2O2 and azide. The linear range of H2O2 was 0.064∼1 mM and for azide 0.125∼4 mM, respectively. Catalase biosensor was based on the principle of the measurements as the decrease in the differentiation of oxygen level, which has been caused by the inhibition of catalase in the bioactive layer of the biosensor by azide. The repeatability experiments were done in triplicate. The logarithm response of the biosensor to H2O2 (r2 = 0.99), as well as, for azide (r2 = 0.90) were reported, respectively. The bioelectrode was characterized by CV and AFM. The proposed biosensor would be applied for the determination of H2O2 and azide in various biological samples.


Polyaniline (PANi) catalase (CAT) hydrogen peroxide (H2O2azide biosensor bioelectrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fita, I. and M. G. Rossmann (1985) The active center of catalase. J. Mol. Biol. 185: 21–37.CrossRefGoogle Scholar
  2. 2.
    Murphy, L. (2006) Biosensors and bioelectrochemistry. Curr. Opin.Chem.Biol. 10: 177–184.CrossRefGoogle Scholar
  3. 3.
    Armstrong, F. A. and G. S. Wilson (2000) Recent developments in faradaic bioelectrochemistry. Electrochim. Acta. 45: 2623–2645.CrossRefGoogle Scholar
  4. 4.
    Murthy, M. R. N., T. J. Reid, A. Sicignano, N. Tanaka, and M. G. Rossmann (1981) Structure of beef liver catalase. J. Mol. Biol. 152: 465–499.CrossRefGoogle Scholar
  5. 5.
    Jouve, H.-M., P. Gouet, N. Boudjada, G. Buisson, R. Kahn, and E. Duee (1991) Crystallization and crystal packing of Proteus mirabilis PR catalase. J. Mol. Biol. 221: 1075–1077.CrossRefGoogle Scholar
  6. 6.
    Singh, R. P., S. Shashwat, and S. Kapur (2004) Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J. Ind. Acad. Clin. Med. 5: 218–25.Google Scholar
  7. 7.
    Avshalumov, M. V., B. T. Chen, T. Koos, J. M. Tepper, and M. E. Rice (2005) Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J. Neurosci. 25: 4222–4231.CrossRefGoogle Scholar
  8. 8.
    Avshalumov, M. V. and M. E. Rice (2003) Activation of ATP-sensitive K+ (KATP) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release. Proc. Natl. Acad. Sci. USA 100: 11729–11734.CrossRefGoogle Scholar
  9. 9.
    Salimi, A., E. Sharifi, A. Noorbakhsh, and S. Soltanian (2007) Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide. Biophys. Chem. 125: 540–548.CrossRefGoogle Scholar
  10. 10.
    Lee, W., B. K. Oh, Y. M. Bae, S. H. Paek, W. H. Lee, and J. W. Choi (2003) Fabrication of self-assembled protein A monolayer and its application as an immunosensor. Biosens. Bioelectron. 19: 185–192.CrossRefGoogle Scholar
  11. 11.
    Cui, Y., J. P. Barford, and R. Renneberg (2006) A disposable, screen-printed electrode for the amperometric determination of azide based on the immobilization with catalase or tyrosinase. Anal. Sci. 22: 1279–1281.CrossRefGoogle Scholar
  12. 12.
    Di, J., M. Zhang, K. Yao, and S. Bi (2006) Direct voltammetry of catalase immobilized on silica sol-gel and cysteine modified gold electrode and its application. Biosens. Bioelectron. 22: 247–252.CrossRefGoogle Scholar
  13. 13.
    Oh, B. K., Y. K. Kim, K. W. Park, W. H. Lee, and J. W. Choi (2004) Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens. Bioelectron. 19: 1497–1504.CrossRefGoogle Scholar
  14. 14.
    Choi, J. W., K. W. Park, D. B. Lee, W. Lee, and W. H. Lee (2005) Cell immobilization using self-assembled synthetic oligopeptide and its application to biological toxicity detection using surface plasmon resonance. Biosens. Bioelectron. 20: 2300–2305.CrossRefGoogle Scholar
  15. 15.
    Kim, S. U., Y. J. Kim, and J. W. Choi (2007) Thin film fabrication of electroactive protein with heme group. Biochip J. 1: 188–192.Google Scholar
  16. 16.
    Choi, J. W., B.-K. Oh, J. Min, and Y. J. Kim (2007) Protein-based biomemory device consisting of the cysteine-modified azurin. Appl. Phys. Lett. 91: 263902-1–263902-3.Google Scholar
  17. 17.
    Kim, B. S. and J. W. Choi (2007) Polyelectrolyte multilayer microcapsules: self-assembly and toward biomedical applications. Biotechnol. Bioprocess Eng. 12: 323–332.CrossRefGoogle Scholar
  18. 18.
    Leech, D. and F. Daigle (1998) Optimisation of a reagentless laccase electrode for the detection of the inhibitor azide. Analyst 123: 1971–1974.CrossRefGoogle Scholar
  19. 19.
    Murthy, M. R., T. J. Reid rIII, A. Sicignano, N. Tanaka, and M. G. Rossmann (1981) Structure of beef liver catalase. J. Mol. Biol. 152: 465–499.CrossRefGoogle Scholar
  20. 20.
    Howard, J. D., K. J. Skogerboe, G. A. Case, V. A. Raisys, and E. Q. Lacsina (1990) Death following accidental sodium azide ingestion. J. Forens. Sci. 35: 193–196.Google Scholar
  21. 21.
    Sezginturk, M. K., T. Goktug, and E. Dinckaya (2005) A biosensor based on catalase for determination of highly toxic chemical azide in fruit juices. Biosens. Bioelectron. 21: 684–688.CrossRefGoogle Scholar
  22. 22.
    Szabados, T., C. Dul, K. Majtenyi, J. Hargitai, Z. Penzes, and R. Urbanics (2004) A chronic Alzheimer’s model evoked by mitochondrial poison sodium azide for pharmacological investigations. Behav. Brain Res. 154: 31–40.CrossRefGoogle Scholar
  23. 23.
    Kage, S., K. Kudo, and N. Ikeda (2000) Determination of azide in blood and urine by gas chromatography-mass spectrometry. J. Anal. Toxicol. 24: 429–432.Google Scholar
  24. 24.
    Tsuge, K., M. Kataoka, and Y. Seto (2001) Rapid determination of cyanide and azide in beverages by microdiffusion spectrophotometric method. J. Anal. Toxicol. 25: 228–236.Google Scholar
  25. 25.
    Daigle, F., F. Trudeau, G. Robinson, M. R. Smyth, and D. Leech (1998) Mediated reagentless enzyme inhibition electrodes. Biosens. Bioelectron. 13: 417–425.CrossRefGoogle Scholar
  26. 26.
    Tominaga, M., T. Kumagai, S. Takita, and I. Taniguchi (1993) Effect of surface hydrophilicity of an indium oxide electrode on direct electron transfer of myoglobins. Chem. Lett. 22: 1771–1774.CrossRefGoogle Scholar
  27. 27.
    Virji, S., J. Huang, R. B. Kaner, and B. H. Weiller (2004) Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett. 4: 491–496.CrossRefGoogle Scholar
  28. 28.
    Li, D. and R. B. Kaner (2006) Shape and aggregation control of nanoparticles: not shaken, not stirred. J. Am. Chem. Soc. 128: 968–975.CrossRefGoogle Scholar
  29. 29.
    Harsha, S. K., S. P. Surwade, X. Zhang, A. G. MacDiarmid, and S. K. Manohar (2005) Absolute molecular weight of polyaniline. J. Am. Chem. Soc. 127: 16770–16771.CrossRefGoogle Scholar
  30. 30.
    Oh, S. Y., I. S. Oh, and J. W. Choi (2004) Patterning of electrically conductive poly (aniline-co-aniline sulfonic acid) and its application in the immobilization of cytochrome c. Mater. Sc. Eng: C 24: 307–309.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Ravindra P. Singh
    • 2
  • Da-Yeon Kang
    • 1
  • Byung-Keun Oh
    • 1
    • 2
  • Jeong-Woo Choi
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulKorea
  2. 2.Interdisciplinary Program of Integrated BiotechnologySogang UniversitySeoulKorea

Personalised recommendations