Advertisement

Biotechnology and Bioprocess Engineering

, Volume 14, Issue 6, pp 795–802 | Cite as

Enhancing Endo-nitrilase production by a newly isolated Arthrobacter nitroguajacolicus ZJUTB06-99 through optimization of culture medium

  • Mei Shen
  • Zhi-Qiang Liu
  • Yu-Guo Zheng
  • Yin-Chu Shen
Articles

Abstract

The medium components of nitrilase production by Arthrobacter nitroguajacolicus ZJUTB06-99 were optimized in this study. Effects of factors such as carbon sources, nitrogen sources, and inducers on nitrilase production were investigated. Glucose, yeast extract, and ε-caprolactam were chosen as the suitable components. Moreover, experiments were carried out to fix the concentration of three factors for the zero coded level of variables in the subsequent optimization. Response surface methodology (RSM) and central composite design (CCD) were employed for further optimization. A quadratic model was found to fit the nitrilase activity and the variables. The results revealed that the optimized medium contained (%, w/v) 2.80, glucose; 0.57, yeast extract; and 0.42, ε-caprolactam. Validation experiments were carried out under the optimized conditions and nitrilase activity of 107.49 U/L was close to the predicted activity 110.82 U/L. After optimization, the nitrilase activity attained 2.86 fold of activity compared to the unoptimized conditions and the conversion of acrylonitrile was significantly improved. The strain growth curve and nitrilase activity alteration in the course of culture were tested. The cells were suitably harvested after cultured for 72∼78 h.

Keywords

nitrilase Arthrobacter nitroguajacolicus optimization response surface methodology acrylonitrile acrylic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, Q., A. Fan, Y. S. Wang, X. Q. Zhu, Z. Wang, M. H. Wu, and Y. G. Zheng (2007) Novel sensitive high-throughput screening strategy for nitrilase-producing strains. Appl. Environ. Microbiol. 73: 6053–6057.CrossRefGoogle Scholar
  2. 2.
    Zheng, Y. G., J. Chen, Z. Q. Liu, M. H. Wu, L. Y. Xing, and Y. C. Shen (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl. Microbiol. Biotechnol. 77: 985–993.CrossRefGoogle Scholar
  3. 3.
    Kaul, P., A. Banerjee, S. Mayilraj, and U. C. Banerjee (2004) Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(−)-mandelic acid by new bacterial isolates. Tetrahedron: Asymmetry 15: 207–211.CrossRefGoogle Scholar
  4. 4.
    Wang, Y. J., Y. G. Zheng, J. P. Xue, and Y. C. Shen (2006) Microbial transformation of indole-3-acetonitrile to indole-3-acetamide by Nocardia sp. 108. Process Biochem. 41: 1746–1750.CrossRefGoogle Scholar
  5. 5.
    Zheng, R. C., Y. G. Zheng, and Y. C. Shen (2007) A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl. Microbiol. Biotechnol. 74: 256–262.CrossRefGoogle Scholar
  6. 6.
    Chen, J., Y. G. Zheng, and Y. C Shen (2008) Biosynthesis of p-methoxyphenylacetic acid from p-methoxyphenylacetonitrile by immobilized Bacillus subtilis ZJB-063. Process Biochem. 43: 978–983.CrossRefGoogle Scholar
  7. 7.
    Naik, S. C., P. Kaul, and B. Barse (2008) Studies on the production of enantio selective nitrilase in a stirred tank bioreactor by Pseudomonas putida MTCC 5110. Bioresour. Technol. 99: 26–31.CrossRefGoogle Scholar
  8. 8.
    Liang, L. Y., Y. G. Zheng, and Y. C. Shen (2008) Optimization of b-alanine production from b-aminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochem. 43: 758–764.CrossRefGoogle Scholar
  9. 9.
    Benz, P., R. Muntwyler, and R. Wohlgemuth (2007) Chemoenzymatic synthesis of chiral carboxylic acids via nitriles. J. Chem. Technol. Biotechnol. 82: 1087–1098.CrossRefGoogle Scholar
  10. 10.
    Vejvoda, V., O. Kaplan, and K. Bezouska (2008) Purification and characterization of a nitrilase from Fusarium solani O1. J. Mol. Catal. B: Enzym. 50: 99–106.CrossRefGoogle Scholar
  11. 11.
    Martinkova, L., V. Vejvoda, and V. Kren (2008) Selection and screening for enzymes of nitrile metabolism. J. Biotechnol. 133: 318–326.CrossRefGoogle Scholar
  12. 12.
    Mutalik, S. R., B. K. Vaidya, and R. M. Joshi (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour. Technol. 99: 7875–7880.CrossRefGoogle Scholar
  13. 13.
    Deepak, V., K. Kalishwaralal, and S. Ramkumarpandian (2008) Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresour. Technol. 99: 8170–8174.CrossRefGoogle Scholar
  14. 14.
    Liu, Z. Q., Z. C. Hu, Y. G. Zheng, and Y. C. Shen (2008) Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem. Eng. J. 38: 285–291.CrossRefGoogle Scholar
  15. 15.
    Liu, Z. Q., Y. Li, F. J. Cui, L. F. Ping, J. N. Song, Y. Ravee, L. Q. Jin, Y. P. Xue, J. M. Xu, G. Li, Y. J. Wang and Y. G. Zheng (2008) Optimization of production and characterization of enzyme-treated octenyl succinic anhydride modified waxy corn starch. J. Agric. Food Chem. 56: 11499–11506.CrossRefGoogle Scholar
  16. 16.
    Ren, J., W. T. Lin, and Y. J. Shen (2008) Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresour. Technol. 99: 7923–7927.CrossRefGoogle Scholar
  17. 17.
    Zhou, X. X., Y. J. Pan, Y. B. Wang, and W. F. Li (2008) Optimization of medium composition for nisin fermentation with response surface methodology. J. Food Sci. 73: 245–249.CrossRefGoogle Scholar
  18. 18.
    Chen, J., Y. G. Zheng, and Y. C. Shen (2008) Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotechnol. Appl. Biochem. 50: 147–153.CrossRefGoogle Scholar
  19. 19.
    Banerjee, A., P. Kaul, and U. C. Banerjee (2006) Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl. Microbiol. Biotechnol. 72: 77–87.CrossRefGoogle Scholar
  20. 20.
    Khandelwal, A. K., V. K. Nigam, and B. Choudhury (2007) Optimization of nitrilase production from a new thermophilic isolate. J. Chem. Technol. Biotechnol. 82: 645–651.CrossRefGoogle Scholar
  21. 21.
    Yamamoto, K. and K. Komatsu (1991) Purification and characterization of nitrilase responsible for the hydrolysis from Acinetobacter sp. AK 226. Agric. Biol. Chem. 55: 1459–1466.Google Scholar
  22. 22.
    Almatawah, Q. A., R. Cramp, and D. A. Cowan (1999) Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles 3: 283–291.CrossRefGoogle Scholar
  23. 23.
    Nagasawa, T., T. Nakamura, and H. Yamada (1990) ɛ- caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch. Microbiol. 155: 13–17.CrossRefGoogle Scholar
  24. 24.
    Gao, Y. L. and X. R. Ju (2007) Statistical prediction of effects of food composition on reduction of Bacillus subtilis As 1.1731 spores suspended in food matrices treated with high pressure. J. Food Eng. 82: 68–76.CrossRefGoogle Scholar
  25. 25.
    Huang, W., Z. S. Li, and H. Niu (2008) Optimization of operating parameters for supercritical carbon dioxide extraction of lycopene by response surface methodology. J. Food Eng. 89: 298–302.CrossRefGoogle Scholar
  26. 26.
    Masmoudi, M., S. Besbes, and M. Chaabouni (2008) Optimization of pectin extraction from lemon byproduct with acidified date juice using response surface methodology. Carbohyd. Polym. 74: 185–192.CrossRefGoogle Scholar
  27. 27.
    Mauger, J., T. Nagasawa, and H. Yamada (1990) Occurrence of a novel nitrilase, arylacetonitrilase in Alcaligenes faecalis JM3. Arch. Microbiol. 155: 1–6.CrossRefGoogle Scholar
  28. 28.
    Yamamoto, K., K. Oishi, I. Fujimatsu, and K. I. Komatsu (1991) Production of (R)-(−)-Mandelic Acid from Mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57: 3028–3032.Google Scholar
  29. 29.
    Banerjee, A., P. Kaul, and U. C. Banerjee (2006) Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch. Microbiol. 184: 407–418.CrossRefGoogle Scholar
  30. 30.
    Nagasawa, T., M. Wieser, T. Nakamura, H. Iwahara, T. Yoshida, and K. Gekko (2000) Nitrilase of Rhodococcus rhodochrous J1; conversion into the active form by subunit association. Eur. J. Biochem. 267: 138–144.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mei Shen
    • 1
  • Zhi-Qiang Liu
    • 1
  • Yu-Guo Zheng
    • 1
  • Yin-Chu Shen
    • 1
  1. 1.Institute of BioengineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations