Advertisement

Biotechnology and Bioprocess Engineering

, Volume 13, Issue 4, pp 383–395 | Cite as

Mechanism of skin pigmentation

  • Lam Do Phuong Uyen
  • Dung Hoang Nguyen
  • Eun-Ki Kim
Article

Abstract

Melanin is a pigment that plays an important role in providing coloration and protecting human skin from the harmful effects of UV light radiation. Human skin color is determined by the type and amount of melanins that are synthesized and deposited within the melanosomes. In addition, the transfer of these specialized membrane-bound organelles from melanocytes to surrounding keratinocytes also plays a role in dictating human skin color. In order to investigate the principle features of skin pigmentation, the origin, function, and production ability of melanin should be highly understood in terms of biological and pathophysiological aspects. Furthermore, a deep understanding of melanin synthesis will also contribute to cosmetics and drugs development. In this review, the processes of melanin biosynthesis, such as survival, proliferation, and differentiation of melanin cells, as well as the biological regulation of human pigmentation were described.

Keywords

melanin keratinocyte regulation tyrosinase ultraviolet radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slominski, A., D. J. Tobin, S. Shibahara, and J. Wortsman (2004) The pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84: 1155–1228.CrossRefGoogle Scholar
  2. 2.
    Solano, F., S. Briganti, M. Picardo, and G. Ghanem (2006) Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19: 550–571.CrossRefGoogle Scholar
  3. 3.
    Goding, C. R. (2007) Melanocytes: the new Black. Int. J. Biochem. Cell Biol. 39: 275–279.CrossRefGoogle Scholar
  4. 4.
    Freedberg, I. M., A. Z. Eisen, K. Wolff, K. F. Austen, L. A. Goldsmith, and S. Katz (2003) Fitzpatrick’s Dermatology in General Medicine. 6th ed. McGraw-Hill, Columbus, USA.Google Scholar
  5. 5.
    Osawa, M., G. Egawa, S. S. Mak, M. Moriyama, R. Freter, S. Yonetani, F. Beermann, and S. I. Nishikawa (2005) Molecular characterization of melanocyte stem cells in their niche. Development 132: 5589–5599.CrossRefGoogle Scholar
  6. 6.
    Bolognia, J. L., J. L. Jorizzo, and R. P. Rapini (2007) Dermatology. 2nd ed. Elsevier, Amsterdam, The Netherlands.Google Scholar
  7. 7.
    Alhaidari, Z., T. Olivry, and J. P. Ortonne (1999) Melanocytogenesis and melanogenesis: genetic regulation and comparative clinical diseases. Vet. Dermatol. 10: 3–16.CrossRefGoogle Scholar
  8. 8.
    Anne, L. and T. John (2006) Adverse Drug Reactions. 2nd ed. Pharmaceutical Press, London, UK.Google Scholar
  9. 9.
    Steingrímsson, E., N. G. Copeland, and N. A. Jenkins (2004) Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38: 365–411.CrossRefGoogle Scholar
  10. 10.
    Carreira, S., J. Goodall, I. Aksan, S. A. La Rocca, M. D. Galibert, L. Denat, L. Larue, and C. R. Goding (2005) Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433: 764–769.CrossRefGoogle Scholar
  11. 11.
    Haskell-Luevano, C., H. Miwa, C. Dickinson, V. J. Hruby, T. Yamada, and I. Gantz (1994) Binding and cAMP studies of melanotropin peptides with the cloned human peripheral melanocortin receptor, hMC1R. Biochem. Biophys. Res. Commun. 204: 1137–1142.CrossRefGoogle Scholar
  12. 12.
    Sulaimon, S. S. and B. E. Kitchell (2003) The biology of melanocytes. Vet. Dermatol. 14: 57–65.CrossRefGoogle Scholar
  13. 13.
    Jouneau, A., Y. Q. Yu, M. Pasdar, and L. Larue (2000) Plasticity of cadherin-catenin expression in the melanocyte lineage. Pigment Cell Res. 13: 260–272.CrossRefGoogle Scholar
  14. 14.
    Kunisada, T., H. Yamazaki, T. Hirobe, S. Kamei, M. Omoteno, H. Tagaya, H. Hemmi, U. Koshimizu, T. Nakamura, and S. I. Hayashi (2000) Keratinocyte expression of transgenic hepatocyte growth factor affects melanocyte development, leading to dermal melanocytosis. Mech. Dev. 94: 67–78.CrossRefGoogle Scholar
  15. 15.
    Pla, P. and L. Larue (2003) Involvement of endothelin receptors in normal and pathological development of neural crest cells. Int. J. Dev. Biol. 47: 315–325.Google Scholar
  16. 16.
    Lahav, R., E. Dupin, L. Lecoin, C. Glavieux, D. Champeval, C. Ziller, and N. M. Le Douarin (1998) Endothelin 3 selectively promotes survival and proliferation of neural crest-derived glial and melanocytic precursors in vitro. Proc. Natl. Acad. Sci. USA 95: 14214–14219.CrossRefGoogle Scholar
  17. 17.
    Nishimura, E. K., H. Yoshida, T. Kunisada, and S. I. Nishikawa (1999) Regulation of E-and P-cadherin exression correlated with melanocyte migration and diversification. Dev. Biol. 215: 155–166.CrossRefGoogle Scholar
  18. 18.
    Herlyn, M., C. Berking, G. Li, and K. Satyamoorthy (2000) Lessons from melanocyte development for understanding the biological events in naevus and melanoma formation. Melanoma Res. 10: 303–312.CrossRefGoogle Scholar
  19. 19.
    Jimbow, K., W. C. Quevedo, Jr. T. B. Fitzpatrick, and G. Szabo (1976) Some aspects of melanin biology: 1950–1975. J. Invest. Dermatol. 67: 72–89.CrossRefGoogle Scholar
  20. 20.
    Szabo, G. (1967) The regional anatomy of the human integument with special reference to the distribution of hair follicles, sweat glands and melanocytes. Philos. Trans. R. Soc. Lond. B 252: 447–485.CrossRefGoogle Scholar
  21. 21.
    Bolognia, J. L. and J. M. Pawelek (1988) Biology of hypopigmentation. J. Am. Acad. Dermatol. 19: 217–255.CrossRefGoogle Scholar
  22. 22.
    Jimbow, K., P. F. Gomez, K. Toyofuku, D. Chang, S. Miura, H. Tsujiya, and J. S. Park (1997) Biological role of tyrosinase related protein and its biosynthesis and transport from TGN to stage I melanosome, late endosome, through gene transfection study. Pigment Cell Res. 10: 206–213.CrossRefGoogle Scholar
  23. 23.
    Helenius, A. and M. Aebi (2001) Intracellular functions of N-linked glycans. Science 291: 2364–2369.CrossRefGoogle Scholar
  24. 24.
    Branza-Nichita, N., A. J. Petrescu, G. Negroiu, R. A. Dwek, and S. M. Petrescu (2000) N-Glycosylation processing and glycoprotein folding-lessons from the tyrosinase-related proteins. Chem. Rev. 100: 4697–4712.CrossRefGoogle Scholar
  25. 25.
    Olivares, C., F. Solano, and J. C. García-Borrón (2003) Conformation-dependent post-translational glycosylation of tyrosinase. Requirement of a specific interaction involving the CuB metal binding site. J. Biol. Chem. 278: 15735–15743.CrossRefGoogle Scholar
  26. 26.
    Halaban, R., E. Cheng, Y. Zhang, G. Moellmann, D. Hanlon, M. Michalak, V. Setaluri, and D. N. Hebert (1997) Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc. Natl. Acad. Sci. USA 94: 6210–6215.CrossRefGoogle Scholar
  27. 27.
    Park, H. Y. and B. A. Gilchrest (1999) Signaling pathway mediating melanogenesis. Cell. Mol. Biol. 45: 919–930.Google Scholar
  28. 28.
    Choe, T., I. Park, and S. Hong (2002) Determination of tyrosinase mRNA in melanoma by reverse transcription-PCR and optical mirror resonance biosensor. Biotechnol. Bioprocess Eng. 7: 212–215.CrossRefGoogle Scholar
  29. 29.
    Setaluri, V. (2000) Sorting and targeting of melanosomal membrane proteins: signals, pathways, and mechanisms. Pigment Cell Res. 13: 128–134.CrossRefGoogle Scholar
  30. 30.
    Raposo, G. and M. S. Marks (2002) The dark side of lysosome-related organelles: specialization of the endocytic pathway for melanosome biogenesis. Traffic 3: 237–248.CrossRefGoogle Scholar
  31. 31.
    Seabra, M. C., E. H. Mules, and A. N. Hume (2002) Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 8: 23–30.CrossRefGoogle Scholar
  32. 32.
    Hearing, V. J. (2005) Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J. Dermatol. Sci. 37: 3–14.CrossRefGoogle Scholar
  33. 33.
    García-Borrón, J. C. and F. Solano (2002) Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center. Pigment Cell Res. 15: 162–173.CrossRefGoogle Scholar
  34. 34.
    Berens, W., K. Van Den Bossche, T. J. Yoon, W. Westbroek, J. C. Valencia, C. J. Out, J. Marie Naeyaert, V. J. Hearing, and J. Lambert (2005) Different approaches for assaying melanosome transfer. Pigment Cell Res. 18: 370–381.CrossRefGoogle Scholar
  35. 35.
    Slominski, A., D. J. Tobin, S. Shibahara, and J. Wortsman (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84: 1155–1228.CrossRefGoogle Scholar
  36. 36.
    Kushimoto, T., J. C. Valencia, G.-E. Costin, K. Toyofuku, H. Watabe, K.-I. Yasumoto, F. Rouzaud, W. D. Vieira, and V. J. Hearing (2003) The melanosome: an ideal model to study cellular differentiation. Pigment Cell Res. 16: 237–244.CrossRefGoogle Scholar
  37. 37.
    Ancans, J., M. J. Hoogduijn, and A. J. Thody (2001) Melanosomal pH, pink locus protein and their roles in melanogenesis. J. Invest. Dermatol. 117: 158–159.CrossRefGoogle Scholar
  38. 38.
    Du, L. and D. E. Fisher (2002) Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J. Biol. Chem. 277: 402–406.CrossRefGoogle Scholar
  39. 39.
    Zuberbühler, D. A. D. (2002) Influence of the Polyunsaturated Fatty Acids Linoleic Acid, Arachidonic Acid, a-linolenic Acid and γ-linolenic Acid on Melanogenesis of B16 Mouse Melanoma Cells And Normal Human Melanocytes. Ph.D. Thesis. University of Basel, Basel, Switzerland.Google Scholar
  40. 40.
    Jimenez-Cervantes, C., J. C. García-Borrón, P. Valverde, F. Solano, and J. A. Lozano (1993) Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. Eur. J. Biochem. 217: 549–556.CrossRefGoogle Scholar
  41. 41.
    Petit, L. and G. E. Piérard (2003) Skin-lightening products revisited. Int. J. Cosmet. Sci. 25: 169–181.CrossRefGoogle Scholar
  42. 42.
    Ferguson, C. A. and S. H. Kidson (1997) The regulation of tyrosinase gene transcription. Pigment Cell Res. 10: 127–138.CrossRefGoogle Scholar
  43. 43.
    Barral, D. C. and M. C. Seabra (2004) The melanosome as a model to study organelle motility in mammals. Pigment Cell Res. 17: 111–118.CrossRefGoogle Scholar
  44. 44.
    Boissy, R. E., C. Sakai, H. Zhao, T. Kobayashi, and V. J. Hearing (1998) Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1. Exp. Dermatol. 7: 198–204.CrossRefGoogle Scholar
  45. 45.
    Jimbow, K., J. S. Park, F. Kato, K. Hirosaki, K. Toyofuku, C. Hua, and T. Yamashita (2000) Assembly, target-signaling and intracellular transport of tyrosinase gene family proteins in the initial stage of melanosome biogenesis. Pigment Cell Res. 13: 222–229.CrossRefGoogle Scholar
  46. 46.
    Hirokawa, N. (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279: 519–526.CrossRefGoogle Scholar
  47. 47.
    Vale, R. D. (2003) The molecular motor toolbox for intracellular transport. Cell 112: 467–480.CrossRefGoogle Scholar
  48. 48.
    Hara, M., M. Yaar, H. R. Byers, D. Goukassian, R. E. Fine, J. Gonsalves, and B. A. Gilchrest (2000) Kinesin participates in melanosomal movement along melanocyte dendrites. J. Invest. Dermatol. 114: 438–443.CrossRefGoogle Scholar
  49. 49.
    Marks, M. S. and M. C. Seabra (2001) The melanosome: membrane dynamics in black and white. Nat. Rev. Mol. Cell Biol. 2: 738–748.CrossRefGoogle Scholar
  50. 50.
    Boissy, R. E. (2003) Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. 12: 5–12.CrossRefGoogle Scholar
  51. 51.
    Van Den Bossche, K., J. M. Naeyaert, and J. Lambert (2006) The quest for the mechanism of melanin transfer. Traffic 7: 769–778.CrossRefGoogle Scholar
  52. 52.
    Stanojevic, M., Z. Stanojevic, D. Jovanovic, and M. Stojiljkovic (2004) Ultraviolet radiation and melanogenesis. Arch. Oncol. 12: 203–205.CrossRefGoogle Scholar
  53. 53.
    Scott, G., S. Leopardi, S. Printup, and B. C. Madden (2002) Filopodia are conduits for melanosome transfer to keratinocytes. J. Cell Sci. 115: 1441–1451.Google Scholar
  54. 54.
    Jimbow, K., C. Hua, P. F. Gomez, K. Hirosaki, K. Shinoda, T. G. Salopek, H. Matsusaka, H. Y. Jin, and T. Yamashita (2000) Intracellular vesicular trafficking of tyrosinase gene family protein in eu-and pheomelanosome biogenesis. Pigment Cell Res. 13: 110–117.CrossRefGoogle Scholar
  55. 55.
    Seiberg, M. (2001) Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res. 14: 236–242.CrossRefGoogle Scholar
  56. 56.
    Parvez, S., M. Kang, H. S. Chung, C. Cho, M. C. Hong, M. K. Shin, and H. Bae (2006) Survey and mechanism of skin depigmenting and lightening agents. Phytother. Res. 20: 921–934.CrossRefGoogle Scholar
  57. 57.
    Villarama, C. D. and H. I. Maibach (2005) Glutathione as a depigmenting agent: an overview. Int. J. Cosmet. Sci. 27: 147–153.CrossRefGoogle Scholar
  58. 58.
    Chakraborty, A. K., Y. Funasaka, A. Slominski, J. Bolognia, S. Sodi, M. Ichihashi, and J. M. Pawelek (1999) UV lights and MSH receptors. Ann. N. Y. Acad. Sci. 885: 100–116.CrossRefGoogle Scholar
  59. 59.
    Lee, H. J. and Y. Seo (2006) Antioxidant properties of Erigeron Annuus extract and its three phenolic constituents. Biotechnol. Bioprocess Eng. 11: 13–18.CrossRefGoogle Scholar
  60. 60.
    Kang, K. A., S. Chae, K. H. Lee, R. Zhang, M. S. Jung, H. J. You, J. S. Kim, and J. W. Hyun (2005) Antioxidant effect of homogentisic acid on hydrogen peroxide induced oxidative stress in human lung fibroblast cells. Biotechnol. Bioprocess Eng. 10: 556–563.CrossRefGoogle Scholar
  61. 61.
    Bolognia, J., M. Murray, and J. Pawelek (1989) UVB-induced melanogenesis may be mediated through the MSH-receptor system. J. Invest. Dermatol. 92: 651–656.CrossRefGoogle Scholar
  62. 62.
    Halaban, R., B. S. Kwon, and S. Ghosh (1988) bFGF as an autocrine growth factor for human melanomas. Oncogene Res. 3: 177–186.Google Scholar
  63. 63.
    Barsh, G. S. (1995) Pigmentation, pleiotropy, and genetic pathways in humans and mice. Am. J. Hum. Genet. 57: 743–747.Google Scholar
  64. 64.
    Smith, R., E. Healy, S. Siddiqui, N. Flanagan, P.M. Steijlen, I. Rosdahl, J. P. Jacques, S. Rogers, R. Turner, I. J. Jackson, M. A. Birch-Machin, and J. L. Rees (1998) Melanocortin 1 receptor variants in an Irish population. J. Invest. Dermatol. 111: 119–122.CrossRefGoogle Scholar
  65. 65.
    Rees, J. L. (2000) The melanocortin 1 receptor (MC1R): more than just red hair. Pigment Cell Res. 13: 135–140.CrossRefGoogle Scholar
  66. 66.
    Valverde, P., E. Healy, I. Jackson, J. L. Rees, and A. J. Thody (1995) Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11: 328–330.CrossRefGoogle Scholar
  67. 67.
    Furumura, M., C. Sakai, Z. Abdel-Malek, G. S. Barsh, and V. J. Hearing (1996) The interaction of agouti signal protein and melanocyte stimulating hormone to regulate melanin formation in mammals. Pigment Cell Res. 9: 191–203.CrossRefGoogle Scholar
  68. 68.
    Sakai, C., M. Ollmann, T. Kobayashi, Z. Abdel-Malek, J. Muller, W. D. Vieira, G. Imokawa, G. S. Barsh, and V. J. Hearing (1997) Modulation of murine melanocyte function in vitro by agouti signal protein. EMBO J. 16: 3544–3552.CrossRefGoogle Scholar
  69. 69.
    Housseau, F., A. Moorthy, D. A. Langer, P. F. Robbins, M. I. Gonzales, and S. L. Topalian (2001) N-linked carbohydrates in tyrosinase are required for its recognition by human MHC class II-restricted CD4+ T cells. Eur. J. Immunol. 31: 2690–2701.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg GmbH 2008

Authors and Affiliations

  • Lam Do Phuong Uyen
    • 1
  • Dung Hoang Nguyen
    • 1
  • Eun-Ki Kim
    • 1
  1. 1.Department of Biological EngineeringInha UniversityIncheonKorea

Personalised recommendations