Advertisement

Biotechnology and Bioprocess Engineering

, Volume 14, Issue 2, pp 175–179 | Cite as

Improvement of pristinamycin production by genome shuffling and medium optimization for Streptomyces pristinaespiralis

  • Bo Xu
  • Zhihua Jin
  • Qingchao Jin
  • Ninghui Li
  • Peilin Cen
Articles

Abstract

To isolate an improved pristinamycin producing strain of Streptomyces pristinaespiralis, the technique of Genome shuffling was used which resulted in a high-yield recombinant G 3-56 strain. Strain G 3-56 yielded 322 ± 17 mg/L of pristinamycin which was 11.4-fold higher than that of the initial strain and 3.7-fold higher than strain UN-78 which previously had the highest yield of pristinamycin. The genetic characteristics of the recombinant G 3-56 strain was stable as revealed by our subculture experiments. The optimal production medium was determined using the orthogonal matrix method. Under the optimal medium conditions, the maximum yield of pristinamycin was 412 mg/L with about 1.24-fold higher than the original medium.

Keywords

genome shuffling orthogonal matrix method protoplast fusion pristinamycin Streptomyces pristinaespiralis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corvini, P. F. X., H. Gautier, E. Rondags, H. Vivier, J. L. Goergen, and P. Germain (2000) Intracellular pH determination of pristinamycin-producing Streptomyces pristinaespiralis by image analysis. Microbiology. 146: 2671–2678.Google Scholar
  2. 2.
    Corvini, P. F. X., S. Delaunay, F. Maujean, E. Rondags, H. Vivier, J.-L. Goergen, and P. Germain (2004) Intracellular pH of Streptomyces pristinaespiralis is correlated to the sequential use of carbon sources during the pristinamycins-producing process. Enz. Microbiol. Tech. 34: 101–107.CrossRefGoogle Scholar
  3. 3.
    Voelker, F. and S. Altaba (2001) Nitrogen source governs the patterns of growth and pristinamycin production in Streptomyces pristinaespiralis. Microbiology. 147: 2447–2459.Google Scholar
  4. 4.
    Leclercq, R. and P. Courvalin (1991) Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob. Agents Chemother. 35: 1273–1276.Google Scholar
  5. 5.
    Leclercq, R. and P. Courvalin (1998) Streptogramins: an answer to antibiotic resistance in gram-positive bacteria. Lancet 352: 591–592.CrossRefGoogle Scholar
  6. 6.
    Zhang, Y. X., K. Perry, V. A. Vinci, K. Powell, W. P. C. Stemmer, and S. B. del Cardayre (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644–646.CrossRefGoogle Scholar
  7. 7.
    Patnaik, R., S. Louie, V. Gavrilovic, K. Perry, W. P. C. Stemmer, C. M. Ryan, and S. del Cardayre (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 20: 707–712.CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Y. Li, X. Pei, L. Yu, and Y. Feng (2007) Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J. Biotechnol. 129: 510–515.CrossRefGoogle Scholar
  9. 9.
    Dai, M. H. and S. D. Copley (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl. Environ. Microbiol. 70: 2391–2397.CrossRefGoogle Scholar
  10. 10.
    Hida, H., T. Yamada, and Y. Yamada (2007) Genome shuffling of Streptomyces sp U121 for improved production of hydroxycitric acid. Appl. Microbiol. Biotechnol. 73: 1387–1393.CrossRefGoogle Scholar
  11. 11.
    Kim, H. O., J. M. Lim, J. H. Joo, S. W. Kim, H. J. Hwang, J. W. Choi, and J. W. Yun (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour. Technol. 96: 1175–1182.CrossRefGoogle Scholar
  12. 12.
    Saudagar, P. S. and R. S. Singhal (2007) Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus. Bioresour. Technol. 98: 2010–2017.CrossRefGoogle Scholar
  13. 13.
    Xu, Z. N. and S. T. Yang (2007) Production of mycophenolic acid by Penicillium brevicompactum immobilized in a rotating fibrous-bed bioreactor. Enz. Microbiol. Tech. 40: 623–628.CrossRefGoogle Scholar
  14. 14.
    Wang, H., H. Wang, C. Meng, and Y. H. Guo (2007) Study of breeding Saccharomyces cerevisiae with improved temperature and ethanol tolerance by genome shuffling. Weishengwuxue Tongbao 34: 705–708.Google Scholar
  15. 15.
    Hopwood D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, T. H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Ward, and H. Schrempf (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual. p. 356. The John Innes Foundation, Norwich, UK.Google Scholar
  16. 16.
    Chen, J. M. and L. T. Xu (1991) Analysis of Antibiotic Industry. 2nd ed., p. 31. Chinese Press of Pharmaceutical Science, Beijing, CN.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg GmbH 2009

Authors and Affiliations

  • Bo Xu
    • 1
    • 2
  • Zhihua Jin
    • 1
    • 2
  • Qingchao Jin
    • 1
  • Ninghui Li
    • 1
  • Peilin Cen
    • 2
  1. 1.Department of Biochemical and Pharmaceutical Engineering, Ningbo Institute of TechnologyZhejiang UniversityNingboChina
  2. 2.Institute of Bioengineering, College of Materials Science and Chemical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations