Biotechnology and Bioprocess Engineering

, Volume 13, Issue 6, pp 705–715 | Cite as

Free radical and reactive oxygen species scavenging activities of the extracts from seahorse, Hippocampus kuda Bleeler

  • Zhong-Ji Qian
  • BoMi Ryu
  • Moon-Moo Kim
  • Se-Kwon Kim


Seahorse, Hippocampus kuda (SH) a marine teleost fish, is well known not only for its special medicinal composition and used as one of the most famous and expensive materials of traditional Chinese medicine. It was extracted with water (SHW), methanol (SHM), and ethanol (SHE), respectively and evaluated by various antioxidant assays. The including reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging, superoxide anion radical scavenging, alkyl radical scavenging, and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2′,7′-dichlorofluorescin diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on mouse macrophages, RAW264.7 cell and inhibited myeloperoxidase (MPO) activity in human myeloid, HL60 cells, respectively. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. Among SHM exhibited the highest antioxidant activity in linoleic acid system, effective reducing power, DPPH radical scavenging, hydroxyl radical scavenging, superoxide radical scavenging, alkyl radical scavenging, inhibitory intracellular ROS, and inhibited MPO activity. Furthermore, MTT assay showed no cytotoxicity on mouse macrophages cell (RAW264.7) and human cell lines (MRC-5, HL60, U937). This antioxidant property depends on concentration and increasing with increased amount of extracts. The results obtained in the present study indicated that the see horse (Hippocampus kuda Bleeker) is a potential source of natural antioxidant.


Hippocampus kuda free radical scavenging reactive oxygen species antioxidant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kehrer, J. P. (1993) Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 23: 21–48.CrossRefGoogle Scholar
  2. 2.
    Aruoma, O. I. (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxicol. 32: 671–683.CrossRefGoogle Scholar
  3. 3.
    Yildirim, A., A. Mavi, and A. A. Kara (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 49: 4083–4089.CrossRefGoogle Scholar
  4. 4.
    Gülcin, I., M. Oktay, O. I. Küfrevioǧlu, and A. Aslan (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J. Ethnopharmacol. 79: 325–329.CrossRefGoogle Scholar
  5. 5.
    Farber, J. L. (1994) Mechanisms of cell injury by activated oxygen species. Environ. Health Perspect. 102: 17–24.CrossRefGoogle Scholar
  6. 6.
    El-Habit, O. H.M., H. N. Saada, K. S. Azab, M. Abdel-Rahman, and D. F. El-Malah (2000) The modifying effect of β-carotene on gamma radiation-induced elevation of oxidative reactions and genotoxicity in male rats. Mutat. Res. 466: 179–186.Google Scholar
  7. 7.
    Halliwell, B. (1991) Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 91: 14S–22S.CrossRefGoogle Scholar
  8. 8.
    Fridovich, I. (1999) Fndamental Aspects of Reactive Oxygen Species, Or What’s the Matter with Oxygen? Vol. 893, pp. 13–18. Annals of the New York Academy of Sciences, USA.Google Scholar
  9. 9.
    Halliwell, B. (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721–724.CrossRefGoogle Scholar
  10. 10.
    Duh, P. D. (1998) Antioxidant activity of burdock (Arctium lappa Linné): Its scavenging effect on free-radical and active oxygen. J. Am. Oil Chem. Soc. 75: 455–461.CrossRefGoogle Scholar
  11. 11.
    Pan, Y., J. Zhu, H. Wang, X. Zhang, Y. Zhang, C. He, X. Ji, and H. Li (2007) Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem. 103: 913–918.CrossRefGoogle Scholar
  12. 12.
    Zheng, W. and S. Y. Wang (2001) Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 49: 5165–5170.CrossRefGoogle Scholar
  13. 13.
    Choi, D. B., S. S. Park, J. L. Ding, and W. S. Cha (2007) Effects of Fomitopsis pinicola extracts on antioxidant and antitumor activities. Biotechnol. Bioprocess Eng. 12: 516–524.CrossRefGoogle Scholar
  14. 14.
    Kang, K. S., I. D. Kim, R. H. Kwon, and B. J. Ha (2008) Undaria pinnatifida fucoidan extract protects against CCl4-induced oxidative stress. Biotechnol. Bioprocess Eng. 13: 168–173.CrossRefGoogle Scholar
  15. 15.
    Hu, J. Y., B. F. Li, Z. J. Li, and P. Lu (2000) An experimental study on anti-fatigue effects of eight marine pharmakons. Chin. J. Mar. Drugs 19: 56–58.Google Scholar
  16. 16.
    Zhang, H., Y. Luo, and S. D. Luo (2001) Affect of the sea horse Hippocampus japonicus on pituitarygonadal axis in male rats. Chin. J. Mar. Drugs 20: 39–41.Google Scholar
  17. 17.
    Kaur, G., M. S. Alam, Z. Jabbar, K. Javed, and M. Athar (2006) Evaluation of antioxidant activity of Cassia siamea flowers. J. Ethnopharmacol. 108: 340–348.CrossRefGoogle Scholar
  18. 18.
    Oyaizu, M. (1986) Studies on product of browning reaction prepared from glucose amine. Jpn. J. Nut. 44: 307–315.Google Scholar
  19. 19.
    Osawa, T. and M. Namiki (1985) Natural antioxidant isolated from Eucalyptus leaf waxes. J. Agric. Food Chem. 33: 777–780.CrossRefGoogle Scholar
  20. 20.
    Nanjo, F., K. Goto, R. Seto, M. Suzuki, M. Sakai, and Y. Hara (1996) Scavenging effects of tea catechins and their derivatives on 1.1-diphenyl-2-picrydrazyl radical. Free Radic. Biol. Med. 21: 895–902.CrossRefGoogle Scholar
  21. 21.
    Rosen, G. M. and E. J. Rauckman (1984) Spin trapping of superoxide and hydroxyl radicals. Methods Enzymol. 105: 198–209.CrossRefGoogle Scholar
  22. 22.
    Guo, Q., B. Zhao, S. Shen, J. Hou, J. Hu, and W. Xin (1999) ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochem. Biophys. Acta 1427: 13–23.Google Scholar
  23. 23.
    Hiramoto, K., H. Johkoh, K. Sako, and K. Kikugawa (1993) DNA breaking activity of the carbon-centered radical generated from 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radic. Res. Commun. 19: 323–332.CrossRefGoogle Scholar
  24. 24.
    Hansen, M. B., S. E. Nielsen, and K. Berg (1989) Reexamination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119: 203–210.CrossRefGoogle Scholar
  25. 25.
    Okimotoa, Y., A. Watanabea, E. Nikia, T. Yamashitab, and N. Noguchia (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474: 137–140.CrossRefGoogle Scholar
  26. 26.
    Sambrook, J. and D. Russell (2001) Molecular Cloning: A Laboratory Manual. pp. 84–87. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
  27. 27.
    Worthing (1972) Enzyme Manual, Worthington Biochemical Corporation, Freehold, New Jersey, USA.Google Scholar
  28. 28.
    Kang, K. A., K. H. Lee, S. Chae, Y. S. Koh, B. S. Yoo, J. H. Kim, Y. M. Ham, J. S. Baik, N. H. Lee, and J. W. Hyun (2005) Triphlorethol-A from Ecklonia cava protects V79-4 lung fibroblast against hydrogen peroxide induced cell damage. Free Radic. Res. 39: 883–892.CrossRefGoogle Scholar
  29. 29.
    Rice-Evans, C. A., N. J. Miller, and G. Paganga (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933–956.CrossRefGoogle Scholar
  30. 30.
    Yildirim, A., A. Mavi, M. Oktay, A. A. Kara, O. F. Algur, and V. Bilaloglu (2000) Comparison of antioxidant and antimicrobial activities of tilia (Tilia argenta Desf Ex DC), sage (Salvia triloba L.) and black tea (Camellia sinensis) extracts. J. Agric. Food Chem. 48: 5030–5034.CrossRefGoogle Scholar
  31. 31.
    Cheng, Z., J. Ren, Y. Li, W. Chang, and Z. Chen (2003) Establishment of a quantitative structure-activity relationship model for evaluating and predicting the protective potentials of phenolic antioxidants on lipid peroxidation. J. Pharm. Sci. 92: 475–484.CrossRefGoogle Scholar
  32. 32.
    Matsukawa, R., Z. Dubinsky, E. Kishimoto, K. Masaki, Y. Masuda, T. Takeuchi, M. Chihara, Y. Yamamoto, E. Niki, and I. Karube (1997) A comparison of screening methods for antioxidant activity in seaweeds. J. Appl. Phycol. 9: 29–35.CrossRefGoogle Scholar
  33. 33.
    Lu, Y. and Y. L. Foo (2000) Antioxidant and radical scavenging activities of polyphenols from apple pomace-vegetables. Food Chem. 68: 81–85.CrossRefGoogle Scholar
  34. 34.
    Kim, Y. K., Q. Guo, and L. Packer (2002) Free radical scavenging activity of red ginseng aqueous extracts. Toxicology 172: 149–156.CrossRefGoogle Scholar
  35. 35.
    Lee, H. J. and Y. Seo (2006) Antioxidant properties of Erigeron annuus extract and its three phenolic constituents. Biotechnol. Bioprocess Eng. 11: 13–18.CrossRefGoogle Scholar
  36. 36.
    Aruoma, O. I. (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75: 199–212.CrossRefGoogle Scholar
  37. 37.
    Wickens, A. P. (2001) Ageing and the free radical theory. Respir. Physiol. 128: 379–391.CrossRefGoogle Scholar
  38. 38.
    Veerman, E. C. I., K. Nazmi, W. Van’t Hof, J. G. M. Bolscher, A. L. Den Hertog, and A. V. Nieuw Amerongen (2004) Reactive oxygen species play no role in the candidacidal activity of the salivary antimicrobial peptide histatin 5. Biochem. J. 381: 447–452.CrossRefGoogle Scholar
  39. 39.
    Ikeda-Saito, M., D. A. Shelley, L. Lu, K. S. Booth, W. S. Caughey, and S. Kimura (1991) Salicylhydroxamic acid inhibits myeloperoxidase activity. J. Biol. Chem. 266: 3611–3616.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg GmbH 2008

Authors and Affiliations

  • Zhong-Ji Qian
    • 1
  • BoMi Ryu
    • 2
  • Moon-Moo Kim
    • 3
  • Se-Kwon Kim
    • 1
    • 2
  1. 1.Marine Bioprocess Research CenterPukyong National UniversityBusanKorea
  2. 2.Department of ChemistryPukyong National UniversityBusanKorea
  3. 3.Department of ChemistryDong-Eui UniversityBusanKorea

Personalised recommendations