Biotechnology and Bioprocess Engineering

, Volume 13, Issue 6, pp 666–670 | Cite as

Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumoniae using response surface methodology

  • Baek-Rock Oh
  • Jeong-Woo Seo
  • Min Ho Choi
  • Chul Ho Kim
Article

Abstract

To produce 1,3-propanediol (1,3-PD) from crude glycerol, cultivation conditions were optimized by response surface methodology (RSM) based on a 25 factorial central composite design (CCD). RSM was adopted to derive a statistical model for the individual and interactive effects of crude glycerol, (NH4)2SO4, pH, cultivation time and temperature on the production of 1,3-PD. Optimal conditions for maximum 1,3-PD production were as follows: crude glycerol, 35 g/L; (NH4)2SO4, 8 g/L; pH, 7.37; cultivation time, 10.8 h; temperature, 36.88°C. Under these optimal conditions, the design expert presented the maximal numerical solution with a predicted 1,3-PD production level of up to 13.74 g/L. The experimental production of 1,3-PD yielded 13.8 g/L, which was in close agreement with the model prediction.

Keywords

central composite design crude glycerol 1,3-propanediol Klebsiella pneumoniae response surface methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang, H., C. S. Gong, and G. T. Tsao (2002) Production of 1,3-propanediol by Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 98–100: 687–698.CrossRefGoogle Scholar
  2. 2.
    Zeng, A. P. and H. Biebl (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol. 74: 239–259.Google Scholar
  3. 3.
    El-Ziney, M. G., N. Arneborg, M. Uyttendaele, J. Debevere, and M. Jakobsen (1998) Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol. Lett. 20: 913–916.CrossRefGoogle Scholar
  4. 4.
    Houng, J. Y., K. C. Chen, and W. H. Hsu (1989) Optimization of cultivation medium composition for isoamylase production. Appl. Microbiol. Biotechnol. 31: 61–64.CrossRefGoogle Scholar
  5. 5.
    Reimann, A., H. Biebl, and W. D. Deckwer (1998) Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl. Microbiol. Biotechnol. 49: 359–363.CrossRefGoogle Scholar
  6. 6.
    Biebl, H. (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl. Microbiol. Biotechnol. 35: 701–705.CrossRefGoogle Scholar
  7. 7.
    Forsberg, C. W. (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl. Environ. Microbiol. 53: 639–643.Google Scholar
  8. 8.
    Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu (2006) Microbial production of 1,3-propandiol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755–1759.CrossRefGoogle Scholar
  9. 9.
    Biebl, H., A. P. Zeng, K. Menzel, and W. D. Deckwer (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 50: 24–29.CrossRefGoogle Scholar
  10. 10.
    Box, G. E. P., W. G. Hunter, and J. S. Hunter (1978) Statistic for Experimenters: An Introduction to Design, Data Analysis, and Model Building. John Wiley and Sons Inc., New York, NY, USA.Google Scholar
  11. 11.
    Box, G. E. P. and K. B. Wilson (1951) On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser B 13: 1–45.Google Scholar
  12. 12.
    Preetha, R., N. S. Jayaprakash, R. Philip, and I. S. Bright Singh (2007) Optimization of medium for the production of a novel aquaculture probiotic, Micrococcus MCCB 104 using central composite design. Biotechnol. Bioprocess Eng. 12: 548–555.CrossRefGoogle Scholar
  13. 13.
    Shi, F., Z. Xu, and P. Cen (2006) Optimization of γ-polyglutamic acid production by Bacillus subtilis ZJU-7 using a surface-response methodology. Biotechnol. Bioprocess Eng. 11: 251–257.CrossRefGoogle Scholar
  14. 14.
    Zheng, Z. M., Q. L. Hu, J. Hao, F. Xu, N. N. Guo, Y. Sun, and D. H. Liu (2008) Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumoniae AC 15 via central composite design. Bioresour. Technol. 99: 1052–1056.CrossRefGoogle Scholar
  15. 15.
    Chen, H., B. Fang, and Z. Hu (2007) Simultaneous HPLC determination of four key metabolites in the metabolic pathway for production of 1,3-propanediol from glycerol. Chromatographia 65: 629–632.Google Scholar
  16. 16.
    Zheng, S., K. Friehs, N. He, X. Deng, Q. Li, Z. He, C. Xu, and Y. Lu (2007) Optimization of medium components for plasmid production by recombinant E. coli DH5α pUK21CMVβ1.2. Biotechnol. Bioprocess Eng. 12: 213–221CrossRefGoogle Scholar
  17. 17.
    Min, B. J., Y. S. Park, S. W. Kang, Y. S. Song, J. H. Lee, C. Park, C. W. Kim, and S. W. Kim (2007) Statistical optimization of medium components for the production of xylanase by Aspergillus niger KK2 in submerged cultivation. Biotechnol. Bioprocess Eng. 12: 302–307.CrossRefGoogle Scholar
  18. 18.
    Mundra, P., K. Desai, and S. S. Lele (2007) Application of response surface methodology to cell immobilization for the production of palatinose. Bioresour. Technol. 98: 2892–2896.CrossRefGoogle Scholar
  19. 19.
    Paul, G. C., C. A. Kent, and C. R. Thomas (1992) Quantitative characterization of vacuolization in Penicillium chyrsogenum using automatic image analysis. Trans. IChemE. 70: 13–20.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg GmbH 2008

Authors and Affiliations

  • Baek-Rock Oh
    • 1
  • Jeong-Woo Seo
    • 1
  • Min Ho Choi
    • 1
  • Chul Ho Kim
    • 1
  1. 1.Molecular Bioprocess Research Center, Jeonbuk Branch InstituteKRIBBJeongeupKorea

Personalised recommendations