High cell density ethanol fermentation in an upflow packed-bed cell recycle bioreactor

  • Ho Nam Chang
  • Byoung Jin Kim
  • Jong Won Kang
  • Chang Moon Jeong
  • Nag-Jong Kim
  • Joong Kon Park


An upflow packed-bed cell recycle bioreactor (IUPCRB) is proposed for obtaining a high cell density. The system is comprised of a stirred tank bioreactor in which cells are retained partially by a packed-bed. A 1.3 cm (ID) × 48 cm long packed-bed was installed inside a 2 L bioreactor (working volume 1 L). Continuous ethanol fermentation was carried out using a 100 g/L glucose solution containing Saccharomyces cerevisiae (ATCC 24858). Cell retention characteristics were investigated by varying the void fraction (VF) of the packed bed by packing it with particles of 0.8∼2.0 mm sized stone, cut hollow fiber pieces, ceramic, and activated carbon particles. The best results were obtained using an activated carbon bed with a VF of 30∼35%. The IUPCRB yielded a maximum cell density of 87 g/L, an ethanol concentration of 42 g/L, and a productivity of 21 g/L/h when a 0.5 h−1 dilution rate was used. A natural bleeding of cells from the filter bed occurred intermittently. This cell loss consisted of an average of 5% of the cell concentration in the bioreactor when a high cell concentration (approximately 80 g/L) was being maintained.


high cell density void fraction upflow packed-bed activated carbon 


  1. 1.
    Lynd, L. R., J. H. Cushman, R. J. Nichols, and C. E. Wyman (1991) Fuel ethanol from cellulosic biomass. Science 251: 1318–1323.CrossRefGoogle Scholar
  2. 2.
    Stephanopoulos, G. (2007) Challenges in engineering microbes for biofuels production. Science 315: 801–804.CrossRefGoogle Scholar
  3. 3.
    Prasad, S., A. Singh, and H. C. Joshi (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recy. 50: 1–39.CrossRefGoogle Scholar
  4. 4.
    Shuler, M. L. and F. Kargi (2003) Bioprocess Engineering: Basic Concepts. 2nd ed., Prentice Hall PTR, Englewood Cliffs, NJ, USA.Google Scholar
  5. 5.
    Kim, B. S., S. C. Lee, S. Y. Lee, H. N. Chang, Y. K. Chang, and S. I. Woo (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol. Bioeng. 43: 892–898.CrossRefGoogle Scholar
  6. 6.
    Lee, Y. L. and H. N. Chang (1990) High cell density culture of a recombinant Escherichia coli producing penicillin acylase in a membrane cell recycle fermentor. Biotechnol. Bioeng. 36: 330–337.CrossRefGoogle Scholar
  7. 7.
    Park, J. K., Y. B. Jin, and H. N. Chang (1999) Reusable biosorbents in capsules from Zoogloea ramigera cells for cadmium removal. Biotechnol. Bioeng. 63: 116–121.CrossRefGoogle Scholar
  8. 8.
    Chang, H. N. and M. Moo-Young (1988) Estimation of oxygen penetration depth in immobilized cells. Appl. Microbiol. Biotechnol. 29: 107–112.Google Scholar
  9. 9.
    Zenon (2006) http://www.zenon.com.
  10. 10.
    Koh, J. S. and H. N. Chang (1979) Anaerobic treatment of MSG waste with CSTR and filter. J. Kor. Int. Chem. Eng. 17: 281–292.Google Scholar
  11. 11.
    Yoon, H. H., Y. S. Ghim, H. N. Chang, Y. J. Kim, and J. S. Rhee (1982) Wastewater treatment using a dual biological reactor system. J. Kor. Int. Chem. Eng. 20: 293–300.Google Scholar
  12. 12.
    Rittman, B. E. and P. L. McCarty (2001) Environmental Biotechnology: Principles and Applications. International Edition, McGraw-Hill, Singapore.Google Scholar
  13. 13.
    Wagner, H., R. Bauer, G. Birol, P. Doruker, B. Kirdar, Z. I. Onsan, and K. Ulgen (1998) Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae. Process Biochem. 33: 763–771.CrossRefGoogle Scholar
  14. 14.
    Reynolds, T. D. and P. A. Richards (1996) Unit Operations and Processes in Environmental Engineering. PWS Publishing Co., Boston, MA, USA.Google Scholar
  15. 15.
    Ergun, S. (1952) Fluid flow through packed columns. Chem. Eng. Prog. 48: 89–94.Google Scholar
  16. 16.
    Gron, S., K. Biedermann, and C. Emborg (1996) Production of proteinase A by Saccharomyces cerevisiae in a cell-recycling fermentation system: Experiments and computer simulations. Appl. Microbiol. Biotechnol. 44: 724–730.CrossRefGoogle Scholar
  17. 17.
    Atkinson, B. and F. Mavituna (1983) Biochemical Engineering and Biotechnology Handbook. The Nature Press, New York, NY, USA.Google Scholar
  18. 18.
    Lee, C. W. and H. N. Chang (1987) Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol. Bioeng. 29: 1105–1112.CrossRefGoogle Scholar
  19. 19.
    Cysewski, G. R. and C. R. Wilke (1977) Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol. Bioeng. 19: 1125–1143.CrossRefGoogle Scholar
  20. 20.
    Lee, W. G. (1995) High Density Cell Culture and Continuous Ethanol Fermentation with an Internal Filter System. Ph.D. Thesis. KAIST, Daejeon, Korea.Google Scholar
  21. 21.
    Tchobanoglous, G. F. L. Burton, and H. David Stensel (2003) Wastewater Engineering: Treatment and Reuse. 4th ed., Metcalf & Eddy Inc., McGraw-Hill, New York, NY, USA.Google Scholar
  22. 22.
    Lim, S. J., Y. H. Ahn, E. Y. Kim, and H. N. Chang (2006) Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes. Biotechnol. Bioprocess Eng. 11: 538–543.Google Scholar
  23. 23.
    Jeong, G.-T., G.-Y. Lee, J.-M. Cha, and D.-H. Park (2008) Comparison of packing materials in biofilter system for the biological removal of hydrogen sulfide: Polypropylene fibrils and volcanic stone. Kor. J. Chem. Eng. 25: 118–123.CrossRefGoogle Scholar
  24. 24.
    Rhim, J. A. and J. H. Yoon (2007) Application of a plug-flow column model to a biologically activated carbon pilot plant. Kor. J. Chem. Eng. 24: 600–606.CrossRefGoogle Scholar
  25. 25.
    Lee, J. H., J. S. Lim, C. Park, S. W. Kang, H. Y. Shin, S. W. Park, and S. W. Kim (2007) Continuous production of lactosucrose by immobilized Sterigmatomyces elviae mutant. J. Microbiol. Biotechnol. 17: 1533–1537.Google Scholar
  26. 26.
    Lee, S., H. Lee, S. Lee, S. Chitapornpan, C. Chiemchaisri, C. Polprasert, and K. Ahn (2007) Media configuration and recirculation of upflow anaerobic floating filter for piggery wastewater treatment. Kor. J. Chem. Eng. 24: 980–988.CrossRefGoogle Scholar
  27. 27.
    Jung, J. Y., T. Khan, J. K. Park, and H. N. Chang (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Kor. J. Chem. Eng. 24: 265–271.CrossRefGoogle Scholar
  28. 28.
    Park, S. W., S. J. Park, S. J. Han, J. Lee, D.-S. Kim, J.-H. Kim, B. W. Kim, J. Lee, and S. J. Sim (2007) Repeated batch production of epothilone B by immobilized Sorangium cellulosum. J. Microbiol. Biotechnol. 17: 1208–1212.Google Scholar
  29. 29.
    Yon, J. O., J. S. Lee, B. G. Kim, S. D. Kim, and D. H. Nam (2008) Immobilization of Streptomyces phospholipase D on a Dowex macroporous resin. Biotechnol. Bioprocess Eng. 13: 102–107.CrossRefGoogle Scholar
  30. 30.
    Jeon, B. Y., S. J. Kim, D. H. Kim, B. K. Na, D. H. Park, H. T. Tran, R. Zhang, and D. H. Ahn (2007) Development of a serial bioreactor system for direct ethanol production from starch using Aspergillus niger and Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 12: 566–573.CrossRefGoogle Scholar
  31. 31.
    Byun, I. G., J. J. Park, and T. J. Park (2008) A new method of autotrophic denitrification with spent sulfidic caustic as substrate and alkalinity source. Biotechnol. Bioprocess Eng. 13: 89–95.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology 2008

Authors and Affiliations

  • Ho Nam Chang
    • 1
  • Byoung Jin Kim
    • 1
  • Jong Won Kang
    • 1
  • Chang Moon Jeong
    • 1
  • Nag-Jong Kim
    • 1
  • Joong Kon Park
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Chemical EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations