Biotechnology and Bioprocess Engineering

, Volume 13, Issue 3, pp 279–287 | Cite as

Reconstruction of a rabbit corneal epithelium on a lyophilized amniotic membrane using tilting air-liquid interface culture followed by tilting submerged culture

  • Jae-Il Ahn
  • In-Keun Jang
  • Young-Kwon Seo
  • Hee-Hoon Yoon
  • Yeon-Ho Shin
  • Jae-Chan Kim
  • Kye-Yong Song
  • Eun-Kyung Yang
  • Jung-Keug Park


Herein, we reconstructed a rabbit corneal epithelium on a lyophilized amniotic membrane (LAM) using a modified version of two Teflon rings (the Ahn’s supporter). We compared the corneal epithelial cells we had differentiated in vitro using air-liquid interface (6 days, 12 days) and submerged (6 days, 12 days) cultures and followed a six-day tilting dynamic air-liquid interface culture with a six-day tilting submerged culture. We characterized the reconstructed corneal epithelium using digital photography, histological imaging, and transmission electron microscopy. The reconstructed corneal epithelium created under air-liquid interface culture exhibited a healthier basal corneal epithelial layer than that created under submerged culture. The reconstructed corneal epithelium on the LAM that was produced using the tilting dymanic culture exhibited a healthy basal layer. We therefore proposed that tilting submerged culture not only supplied nutrients from the medium to the corneal epithelial cells on the LAM, but it also removed the horny layer in the upper part of the reconstructed corneal epithelium, presumably by mimicking the effects of blinking. This study demonstrated that corneal epithelium reconstruction on a LAM using a tilting submerged culture after a tilting air-liquid interface culture may be useful not only for allogeneic or autologous transplantation, but also for in vitro toxicological test kits.


lyophilized amniotic membrane corneal epithelium blinking effects horny layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jo, I., J. M. Lee, H. Suh, and H. Kim (2007) Bone tissue engineering using marrow stromal cells. Biotechnol. Bioprocess Eng. 12: 48–53.CrossRefGoogle Scholar
  2. 2.
    Hwang, Y. S., Y. Kang, and A. Mantalaris (2007) Directing embryonic stem cell differentiation into osteogenic/chondrogenic lineage in vitro. Biotechnol. Bioprocess Eng. 12: 15–21.CrossRefGoogle Scholar
  3. 3.
    Min, B. H., B. H. Choi, and S. R. Park (2007) Low intensity ultrasound as a supporter of cartilage regeneration and its engineering. Biotechnol. Bioprocess Eng. 12: 22–31.CrossRefGoogle Scholar
  4. 4.
    Koizumi, N., T. Inatomi, A. J. Quantock, N. J. Fullwood, A. Dota, and S. Kinoshita (2000) Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea 19: 65–71.CrossRefGoogle Scholar
  5. 5.
    Koizumi, N., T. Inatomi, T. Suzuki, C. Sotozono, and S. Kinoshita (2001) Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 108: 1569–1574.CrossRefGoogle Scholar
  6. 6.
    Tsai, R. J. F., L. M. Li, and J. K. Chen (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 343: 86–93.CrossRefGoogle Scholar
  7. 7.
    Minami, Y., H. Sugihara, and S. Oono (1993) Reconstruction of cornea in three-dimensional collagen gel matrix culture. Invest. Ophthalmol. Vis. Sci. 34: 2316–2324.Google Scholar
  8. 8.
    Daniels, J. T., J. K. G. Dart, S. J. Tuft, and P. T. Khaw (2001) Corneal stem cells in review. Wound Repair Regen. 9: 483–494.CrossRefGoogle Scholar
  9. 9.
    Shapiro, M. S., J. Friend, and R. A. Thoft (1981) Corneal re-epithelialization from the conjunctiva. Invest. Ophthalmol. Vis. Sci. 21: 135–142.Google Scholar
  10. 10.
    Tseng, S. C. G. (1996) Regulation and clinical implications of corneal epithelial stem cells. Mol. Biol. Rep. 23: 47–58.CrossRefGoogle Scholar
  11. 11.
    Griffith, M., M. Hakim, S. Shimmura, M. A. Watsky, F. Li, D. Carlsson, C. J. Doillon, M. Nakamura, E. Suuronen, N. Shinozaki, K. Nakata, and H. Sheardown (2002) Artificial human corneas: scaffolds for transplantation and host regeneration. Cornea 21: S54–S61.CrossRefGoogle Scholar
  12. 12.
    Hicks, C. R., J. H. Fitton, T. V. Chirila, G. J. Crawford, and I. J. Constable (1997) Keratoprostheses: advancing toward a true artificial cornea. Surv. Ophthalmol. 42: 175–189.CrossRefGoogle Scholar
  13. 13.
    Schwab, I. R., M. Reyes, and R. R. Isseroff (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19: 421–426.CrossRefGoogle Scholar
  14. 14.
    Kinoshita, S., N. Koizumi, and T. Nakamura (2004) Transplantable cultivated mucosal epithelial sheet for ocular surface reconstruction. Exp. Eye Res. 78: 483–491.CrossRefGoogle Scholar
  15. 15.
    Nakamura, T., T. Inatomi, L. J. Cooper, H. Rigby, N. J. Fullwood, and S. Kinoshita (2007) Phenotypic investigation of human eyes with transplanted autologous cultivated oral mucosal epithelial sheets for severe ocular surface diseases. Ophthalmology 114: 1080–1088.CrossRefGoogle Scholar
  16. 16.
    Ma, Y., Y. Xu, Z. Xiao, W. Yang, C. Zhang, E. Song, Y. Du, and L. Li (2006) Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 24: 315–321.CrossRefGoogle Scholar
  17. 17.
    Jasinkowski, N. L. and J. L. Cullum (1984) Human amniotic membrane: As a wound dressing. AORN J. 39: 894–899.CrossRefGoogle Scholar
  18. 18.
    Quinby, W. C. Jr., H. C. Hoover, M. Scheflan, P. T. Walters, S. A. Slavin, and C. C. Bondoc (1982) Clinical trials of amniotic membranes in burn wound care. Plast. Reconstr. Surg. 70: 711–717.CrossRefGoogle Scholar
  19. 19.
    Tyszkiewicz, J. T., I. A. Uhrynowska-Tyszkiewicz, A. Kaminski, and A. Dziedzic-Goclawska (1999) Amnion allografts prepared in the Central Tissue Bank in Warsaw. Ann. Transplant. 4: 85–90.Google Scholar
  20. 20.
    Subrahmanyam, M. (1995) Amniotic membrane as a cover for microskin grafts. Br. J. Plast. Surg. 48: 477–478.CrossRefGoogle Scholar
  21. 21.
    Mohammad, J., J. Shenaq, E. Rabinovsky, and S. Shenaq (2000) Modulation of peripheral nerve regeneration: A tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast. Reconstr. Surg. 105: 660–666.CrossRefGoogle Scholar
  22. 22.
    Noguchi, Y., Y. Uchida, T. Endo, H. Ninomiya, A. Nomura, T. Sakamoto, Y. Goto, S. Haraoka, T. Shimokama, T. Watanabe, S. Hasegawa, and Y. Uchida (1995) The induction of cell differentiation and polarity of tracheal epithelium cultured on the amniotic membrane. Biochem. Biophys. Res. Commun. 210: 302–309.CrossRefGoogle Scholar
  23. 23.
    Ahn, K. M., J. H. Lee, S. J. Hwang, P. H. Choung, M. J. Kim, H. J. Park, J. K. Park, J. Jahng, and E. K. Yang (2006) Fabrication of myomucosal flap using tissue-engineered bioartificial mucosa constructed with oral keratinocytes cultured on amniotic membrane. Artif. Organs 30: 411–423.CrossRefGoogle Scholar
  24. 24.
    Demirkan, F., N. Colakoglu, O. Herek, and G. Erkula (2002) The use of amniotic membrane in flexor tendon repair: an experimental model. Arch. Orthop. Trauma Surg. 122: 396–399.Google Scholar
  25. 25.
    Ahn, J. I., I. K. Jang, D. H. Lee, Y. K. Seo, H. H. Yoon, Y. H. Shin, J. C. Kim, K. Y. Song, H. G. Lee, E. K. Yang, K. H. Kim, and J. K. Park (2005) A comparison of lyophilized amniotic membrane with cryopreserved amniotic membrane for the reconstruction of rabbit corneal epithelium. Biotechnol. Bioprocess Eng. 10: 262–269.CrossRefGoogle Scholar
  26. 26.
    Ahn, J. I., I. K. Jang, M. Y. Yoon, Y. K. Seo, H. H. Yoon, J. C. Kim, K. Y. Song, E. K. Yang, and J. K. Park (2006) Reconstruction of rabbit corneal layer composed of corneal fibroblasts and corneal epithelium on the lyophilized amniotic membrane. Chem. Res. Chin. Univ. 22: 150–156.CrossRefGoogle Scholar
  27. 27.
    Jang, I. K., J. I. Ahn, J. S. Shin, Y. S. Kwon, Y. H. Ryu, J. K. Lee, J. K. Park, K. Y. Song, E. K. Yang, and J. C. Kim (2006) Transplantation of reconstructed corneal layer composed of corneal epithelium and fibroblasts on a lyophilized amniotic membrane to severely alkaliburned cornea. Artif. Organs 30: 424–431.CrossRefGoogle Scholar
  28. 28.
    Ahn, J. I., D. H. Lee, Y. H. Ryu, I. K. Jang, M. Y. Yoon, Y. H. Shin, Y. K. Seo, H. H. Yoon, J. C. Kim, K. Y. Song, E. K. Yang, K. H. Kim, and J. K. Park (2007) Reconstruction of rabbit corneal epithelium on lyophilized amniotic membrane using the tilting dynamic culture method. Artif. Organs 31: 711–721.CrossRefGoogle Scholar
  29. 29.
    Nakamura, T., M. Yoshitani, H. Rigby, N. J. Fullwood, W. Ito, T. Inatomi, C. Sotozono, T. Nakamura, Y. Shimizu, and S. Kinoshita (2004) Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest. Ophthalmol. Vis. Sci. 45: 93–99.CrossRefGoogle Scholar
  30. 30.
    Farazdaghi, M., J. Adler, and S. Farazdaghi (2001) Electron microscopy of human amniotic membrane. pp. 149–171. In: A. Nather (ed.). The Scientific Basis of Tissue Transplantation. World Scientific Publishing Co., NJ, USA.Google Scholar
  31. 31.
    Yang, E. K., Y. K. Seo, and J. K. Park (2000) Development and application of bioartificial skin. Int. J. Artif. Organs 23: 597–600.Google Scholar
  32. 32.
    Yang, E. K., Y. K. Seo, H. H. Yoon, D. H. Lee, S. N. Park, and J. K. Park (2000) Tissue engineered artificial skin composed of dermis and epidermis. Artif. Organs 24: 7–17.CrossRefGoogle Scholar
  33. 33.
    Yang, E. K., H. H. Yoon, D. H. Lee, and J. K. Park (2000) Assessment of toxic potential of industrial chemicals using a cultured human bioartificial skin model: production of interleukin 1α and hydroxyeicosatetraenoic acids. Skin Pharmacol. Appl. Skin Physiol. 13: 246–257.Google Scholar
  34. 34.
    Nakamura, T., K. Endo, L. J. Cooper, N. J. Fullwood, N. Tanifuji, M. Tsuzuki, N. Koizumi, T. Inatomi, Y. Sano, and S. Kinoshita (2003) The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Invest. Ophthalmol. Vis. Sci. 44: 106–116.CrossRefGoogle Scholar
  35. 35.
    Ban, Y., L. J. Cooper, N. J. Fullwood, T. Nakamura, M. Tsuzuki, N. Koizumi, A. Dota, C. Mochida, and S. Kinoshita (2003) Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting. Exp. Eye Res. 76: 735–743.CrossRefGoogle Scholar
  36. 36.
    Kim, B. S., J. Nikolovski, J. Bonadio, and D. J. Mooney (1999) Cyclic mechanical strain regulates the development of engineering smooth muscle tissue. Nat. Biotechnol. 17: 979–983.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg GmbH 2008

Authors and Affiliations

  • Jae-Il Ahn
    • 1
  • In-Keun Jang
    • 1
    • 2
  • Young-Kwon Seo
    • 1
  • Hee-Hoon Yoon
    • 1
  • Yeon-Ho Shin
    • 1
  • Jae-Chan Kim
    • 2
  • Kye-Yong Song
    • 3
  • Eun-Kyung Yang
    • 4
  • Jung-Keug Park
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringDongguk UniversitySeoulKorea
  2. 2.Department of OphthalmologyChung-Ang University HospitalSeoulKorea
  3. 3.Department of Pathology, College of MedicineChung-Ang UniversitySeoulKorea
  4. 4.R&D Center, Bioland Ltd.CheonanKorea

Personalised recommendations