Biotechnology and Bioprocess Engineering

, Volume 13, Issue 5, pp 533–539 | Cite as

Purification and characterization of extracellular inulinase from a marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase

  • Fang Gong
  • Tong Zhang
  • Zhenming Chi
  • Jun Sheng
  • Jing Li
  • Xianghong Wang


The extracellular inulinase of the marine yeast Pichia guilliermondii strain 1 was purified to homogeneity resulting in a 7.2-fold increase in specific inulinase activity. The molecular mass of the purified enzyme was estimated to be 50.0 kDa. The optimal pH and temperature for the purified enzyme were 6.0 and 60°C, respectively. The enzyme was activated by Mn2+, Ca2+, K+, Li+, Na+, Fe3+, Fe2+, Cu2+, and Co2+, but Mg2+, Hg2+, and Ag+ inhibited activity. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, EDTA, and 1, 10-phenanthroline. The Km and Vmax values of the purified inulinase for inulin were 21.1 mg/mL and 0.08 mg/min, respectively. A large number of monosaccharides were detected after the hydrolysis of inulin. The deduced protein sequence from the cloned P. guilliermondii strain 1 inulinase gene contained the consensus motifs R-D-P-K-V-F-W-H and W-M-N-D-P-N-G, which are conserved among the inulinases from other microorganisms.


inulinase inulinase gene marine yeasts purification Pichia guilliermondii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pandey, A., C. R. Soccol, P. Selvakumar, V. T. Soccol, N. Krieger, and J. D. Fontana (1999) Recent developments in microbial inulinases. Its production, properties, and industrial applications. Appl. Biochem. Biotechnol. 81: 35–52.CrossRefGoogle Scholar
  2. 2.
    Rocha, J. R., R. Catana, B. S. Ferreira, J. M. S. Cabral, and P. Fernandes (2006) Design and characterisation of an enzyme system for inulin hydrolysis. Food Chem. 95: 77–82.CrossRefGoogle Scholar
  3. 3.
    Kaur, N. and A. K. Gupta (2002) Applications of inulin and oligofructose in health and nutrition. J. Biosci. 27: 703–714.CrossRefGoogle Scholar
  4. 4.
    Gill, P. K., R. K. Manhas, and P. Singh (2006) Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigatus. J. Food Eng. 76: 369–375.CrossRefGoogle Scholar
  5. 5.
    Kalil, S. J., F. Maugeri-Filho, and M. I. Rodrigues (2005) Ion exchange expanded bed chromatography for the purification of an extracelular inulinase from Kluyveromyces marxianus. Process Biochem. 40: 581–586.CrossRefGoogle Scholar
  6. 6.
    Laloux, O., J. P. Cassart, J. Delcour, J. Van Beeumen, and J. Vandenhaute (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett. 289: 64–68.CrossRefGoogle Scholar
  7. 7.
    Wen, T., F. Liu, K. Huo, and Y. Y. Li (2003) Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus CBS4857. World J. Microbiol. Biotechnol. 19: 423–426.CrossRefGoogle Scholar
  8. 8.
    Kushi, R. T., R. Monti, and J. Contiero (2000) Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J. Ind. Microbiol. Biotechol. 25: 63–69.CrossRefGoogle Scholar
  9. 9.
    Gong, F., J. Sheng, Z. M. Chi, and J. Li (2007) Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J. Ind. Microbiol. Biotechnol. 34: 179–185.CrossRefGoogle Scholar
  10. 10.
    Spiro, R. G. (1966) Analysis of sugars found in glycoproteins. Methods Enzymol. 8: 3–26.CrossRefGoogle Scholar
  11. 11.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  12. 12.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.CrossRefGoogle Scholar
  13. 13.
    Sharon, C., S. Furugoh, T. Yamakido, H. Ogawa, and Y. Kato (1998) Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. J. Ind. Microbiol. Biotechnol. 20: 304–307.CrossRefGoogle Scholar
  14. 14.
    Barth, G. and C. Gaillardin (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 19: 219–237.CrossRefGoogle Scholar
  15. 15.
    Ramirez-Zavala, B., Y. Mercado-Flores, C. Hernadez-Rodriguez, and L. Villa-Tanaca (2004) Purification and characterization of lysine aminopeptidase from Kluyvero-myces marxianus. FEMS Microbiol. Lett. 235: 369–375.CrossRefGoogle Scholar
  16. 16.
    Varghese, G. and A. M. Diwan (1983) Simultaneous staining of proteins during polyacrylamide gel electrophoresis in acidic gels by countermigration of Coomassie brilliant blue R-250. Anal. Biochem. 132: 481–483.CrossRefGoogle Scholar
  17. 17.
    Rouwenhorst, R. J., M. Hensing, J. Verbakel, W. A. Scheffers, and J. P. van Dijken (1990) Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS 6556. Appl. Environ. Microbiol. 11: 3337–3345.Google Scholar
  18. 18.
    Zhang, L., C. Zhao, W. Y. Ohta, and Y. Wang (2005) Inhibition of glucose on an exoinulinase from Kluyveromyces marxianus expressed in Pichia pastoris. Process Biochem. 40: 1541–1545.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg GmbH 2008

Authors and Affiliations

  • Fang Gong
    • 1
  • Tong Zhang
    • 1
  • Zhenming Chi
    • 1
  • Jun Sheng
    • 1
  • Jing Li
    • 1
  • Xianghong Wang
    • 1
  1. 1.Unesco Chinese Center of Marine BiotechnologyOcean University of ChinaQingdaoChina

Personalised recommendations