Advertisement

Prognostic Significance of Cyclin D1 Expression in Renal Cell Carcinoma: a Systematic Review and Meta-analysis

  • Zeyan Li
  • Jikai Liu
  • Xiang Zhang
  • Liang Fang
  • Cong Zhang
  • Zhao Zhang
  • Lei Yan
  • Yueqing TangEmail author
  • Yidong FanEmail author
Review
  • 27 Downloads

Abstract

Previous studies indicated that cyclin D1 shown the potential as a tumor biomarker. However, the prognostic value of cyclin D1 in renal cell carcinoma (RCC) remains controversial. This study investigated the correlation of cyclin D1 expression with the prognostic and clinicopathological features in RCC patients. We systematically searched the database of PubMed, Embase, Cochrane, and Web of Science updated on November 26, 2017. Eighteen studies with 2282 patients satisfied the inclusion criteria. Results demonstrated that cyclin D1 overexpression in RCC showed significant favorable prognostic impact on disease-free survival (DFS) (HR 0.57, 95% CI: 0.43–0.74) and disease-specific survival (DSS) (HR 0.59, 95% CI 0.41–0.85) without significant heterogeneity. In subgroup of clear cell RCC, the prognostic effect on DFS was robust and the pooled HR was 0.39 (95% CI: 0.27–0.57). However, no association between overall survival (OS) and cyclin D1 expression was observed. Stratified analysis in DFS studies by sample size, staining patterns race and metastasis status showed similar results. Otherwise, cyclin D1 overexpression predicted a reduced prevalence of high TNM stage (T3 + T4) (OR 0.63, 95% CI: 0.40–0.99), high-grade tumor (G3 + G4) (OR 0.51, 95% CI: 0.31–0.81) and large tumor size (OR 0.35, 95% CI: 0.19–0.62). Our meta-analysis indicated that cyclin D1 overexpression could predict the favorable prognosis in patients with RCC.

Keywords

Cyclin D1 Renal cell carcinoma Prognosis Meta-analysis 

Notes

Acknowledgements

We thank Dr. Lubomir Bodnar for providing the original data. This work was supported by grants of Science Foundation of Shandong Province (No.ZR2015HM046) and a grant of National Natural Science Foundation of China (81672522).

Compliance with Ethical Standards

This research does not involve Human Participants and/or Animals.

This article does not contain any studies with human participants performed by any of the authors. No informed consent is needed.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12253_2019_776_MOESM1_ESM.pdf (134 kb)
ESM 1 (PDF 654 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90.  https://doi.org/10.3322/caac.20107 CrossRefPubMedGoogle Scholar
  2. 2.
    MacLennan S, Imamura M, Lapitan MC, Omar MI, Lam TB, Hilvano-Cabungcal AM, Royle P, Stewart F, MacLennan G, MacLennan SJ, Canfield SE, McClinton S, Griffiths TR, Ljungberg B, N’Dow J (2012) Systematic review of oncological outcomes following surgical management of localised renal cancer. Eur Urol 61(5):972–993.  https://doi.org/10.1016/j.eururo.2012.02.039 CrossRefPubMedGoogle Scholar
  3. 3.
    Ljungberg B, Mehle C, Stenling R, Roos G (1996) Heterogeneity in renal cell carcinoma and its impact no prognosis--a flow cytometric study. Br J Cancer 74(1):123–127CrossRefGoogle Scholar
  4. 4.
    Diehl JA (2002) Cycling to cancer with cyclin D1. Cancer Biol Ther 1(3):226–231CrossRefGoogle Scholar
  5. 5.
    Shan J, Zhao W, Gu W (2009) Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 36(3):469–476.  https://doi.org/10.1016/j.molcel.2009.10.018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Palmqvist R, Stenling R, Oberg A, Landberg G (1998) Expression of cyclin D1 and retinoblastoma protein in colorectal cancer. Eur J Cancer (Oxford, England : 1990) 34(10):1575–1581CrossRefGoogle Scholar
  7. 7.
    Aaltomaa S, Lipponen P, Ala-Opas M, Eskelinen M, Syrjanen K, Kosma VM (1999) Expression of cyclins a and D and p21(waf1/cip1) proteins in renal cell cancer and their relation to clinicopathological variables and patient survival. Br J Cancer 80(12):2001–2007.  https://doi.org/10.1038/sj.bjc.6690634 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hedberg Y, Ljungberg B, Roos G, Landberg G (2003) Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray. Br J Cancer 88(9):1417–1423.  https://doi.org/10.1038/sj.bjc.6600922 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Xu XL, Chen SZ, Chen W, Zheng WH, Xia XH, Yang HJ, Li B, Mao WM (2013) The impact of cyclin D1 overexpression on the prognosis of ER-positive breast cancers: a meta-analysis. Breast Cancer Res Treat 139(2):329–339.  https://doi.org/10.1007/s10549-013-2563-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Li Y, Wei J, Xu C, Zhao Z, You T (2014) Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies. PLoS One 9(4):e94508.  https://doi.org/10.1371/journal.pone.0094508 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ren B, Li W, Yang Y, Wu S (2014) The impact of cyclin D1 overexpression on the prognosis of bladder cancer: a meta-analysis. World J Surg Oncol 12:55.  https://doi.org/10.1186/1477-7819-12-55 CrossRefGoogle Scholar
  12. 12.
    Zhang LQ, Jiang F, Xu L, Wang J, Bai JL, Yin R, Wu YQ, Meng LJ (2012) The role of cyclin D1 expression and patient's survival in non-small-cell lung cancer: a systematic review with meta-analysis. Clin Lung Cancer 13(3):188–195.  https://doi.org/10.1016/j.cllc.2011.10.003 CrossRefGoogle Scholar
  13. 13.
    Tobin NP, Sims AH, Lundgren KL, Lehn S, Landberg G (2011) Cyclin D1, Id1 and EMT in breast cancer. BMC Cancer 11:417.  https://doi.org/10.1186/1471-2407-11-417 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ishii Y, Pirkmaier A, Alvarez JV, Frank DA, Keselman I, Logothetis D, Mandeli J, O’Connell MJ, Waxman S, Germain D (2006) Cyclin D1 overexpression and response to bortezomib treatment in a breast cancer model. J Natl Cancer Inst 98(17):1238–1247.  https://doi.org/10.1093/jnci/djj334 CrossRefPubMedGoogle Scholar
  15. 15.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012.  https://doi.org/10.1016/j.jclinepi.2009.06.005 CrossRefGoogle Scholar
  16. 16.
    Furukawa J, Miyake H, Fujisawa M (2016) GLI2 expression levels in radical nephrectomy specimens as a predictor of disease progression in patients with metastatic clear cell renal cell carcinoma following treatment with sunitinib. Mol Clin Oncol 5(3):186–192.  https://doi.org/10.3892/mco.2016.950 CrossRefGoogle Scholar
  17. 17.
    Haddad AQ, Luo JH, Krabbe LM, Darwish O, Gayed B, Youssef R, Kapur P, Rakheja D, Lotan Y, Sagalowsky A, Margulis V (2017) Prognostic value of tissue-based biomarker signature in clear cell renal cell carcinoma. BJU Int 119(5):741–747.  https://doi.org/10.1111/bju.13776 CrossRefPubMedGoogle Scholar
  18. 18.
    Chaves Portela S, Santos-Arrontes D, Fernandez-Acenero MJ, Garcia Gonzalez J, Paniagua P (2011) Stage pT3a of renal clear cell carcinoma: do tumors with sinus fat involvement behave the same as those with perinephric fat involvement? Rom J Morphol Embryol = Revue Roumaine de Morphologie et EMBRYOLOGIE 52(2):569–574Google Scholar
  19. 19.
    Lima MS, Pereira RA, Costa RS, Tucci S, Dantas M, Muglia VF, Ravinal RC, Barros-Silva GE (2014) The prognostic value of cyclin D1 in renal cell carcinoma. Int Urol Nephrol 46(5):905–913.  https://doi.org/10.1007/s11255-013-0602-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Biswas S, Charlesworth PJ, Turner GD, Leek R, Thamboo PT, Campo L, Turley H, Dildey P, Protheroe A, Cranston D, Gatter KC, Pezzella F, Harris AL (2012) CD31 angiogenesis and combined expression of HIF-1alpha and HIF-2alpha are prognostic in primary clear-cell renal cell carcinoma (CC-RCC), but HIFalpha transcriptional products are not: implications for antiangiogenic trials and HIFalpha biomarker studies in primary CC-RCC. Carcinogenesis 33(9):1717–1725.  https://doi.org/10.1093/carcin/bgs222 CrossRefPubMedGoogle Scholar
  21. 21.
    Phuoc NB, Ehara H, Gotoh T, Nakano M, Yokoi S, Deguchi T, Hirose Y (2007) Immunohistochemical analysis with multiple antibodies in search of prognostic markers for clear cell renal cell carcinoma. Urology 69(5):843–848.  https://doi.org/10.1016/j.urology.2007.01.069 CrossRefPubMedGoogle Scholar
  22. 22.
    Allory Y, Matsuoka Y, Bazille C, Christensen EI, Ronco P, Debiec H (2005) The L1 cell adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas. Clin Cancer Res : an Official Journal of the American Association for Cancer Research 11(3):1190–1197Google Scholar
  23. 23.
    Stubbs C, Bardoli AD, Afshar M, Pirrie S, Miscoria M, Wheeley I, Porfiri E (2017) A study of angiogenesis markers in patients with renal cell carcinoma undergoing therapy with Sunitinib. Anticancer Research 37(1):253–259.  https://doi.org/10.21873/anticanres.11315 CrossRefPubMedGoogle Scholar
  24. 24.
    Kusuda Y, Miyake H, Behnsawy HM, Fukuhara T, Inoue TA, Fujisawa M (2013) Prognostic prediction in patients with metastatic renal cell carcinoma treated with sorafenib based on expression levels of potential molecular markers in radical nephrectomy specimens. Urol Oncol 31(1):42–50.  https://doi.org/10.1016/j.urolonc.2010.09.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Bodnar L, Stec R, Cierniak S, Synowiec A, Wcislo G, Jesiotr M, Koktysz R, Kozlowski W, Szczylik C (2015) Clinical usefulness of PI3K/Akt/mTOR genotyping in companion with other clinical variables in metastatic renal cell carcinoma patients treated with everolimus in the second and subsequent lines. Ann Oncol : OFFICIAL journal of the European Society for Medical Oncology 26(7):1385–1389.  https://doi.org/10.1093/annonc/mdv166 CrossRefGoogle Scholar
  26. 26.
    Su T, Han Y, Yu Y, Tan X, Li X, Hou J, Du Y, Shen J, Wang G, Ma L, Jiang S, Zhang H, Cao G (2013) A GWAS-identified susceptibility locus on chromosome 11q13.3 and its putative molecular target for prediction of postoperative prognosis of human renal cell carcinoma. Oncol Lett 6(2):421–426.  https://doi.org/10.3892/ol.2013.1422 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dahinden C, Ingold B, Wild P, Boysen G, Luu VD, Montani M, Kristiansen G, Sulser T, Buhlmann P, Moch H, Schraml P (2010) Mining tissue microarray data to uncover combinations of biomarker expression patterns that improve intermediate staging and grading of clear cell renal cell cancer. Clin Cancer Res : an Official Journal of the American Association for Cancer Research 16(1):88–98.  https://doi.org/10.1158/1078-0432.ccr-09-0260 CrossRefGoogle Scholar
  28. 28.
    Wang F, Guo CH, Sun W, Dong Y, Yang Z (2012) Expressions of E-cadherin, β-catenin and Cyclin D1 in renal clear cell carcinoma. Chinese Journal of Cancer Prevention and Treatment 19(22):1716–1718+1729Google Scholar
  29. 29.
    Migita T, Oda Y, Naito S, Tsuneyoshi M (2002) Low expression of p27(Kip1) is associated with tumor size and poor prognosis in patients with renal cell carcinoma. Cancer 94(4):973–979CrossRefGoogle Scholar
  30. 30.
    Ge JR, Ren GP, Yao HP (2007) Expression of cyclin D1 and p27kip1 in renal cell carcinoma and its significance. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical sciences 36(5):483–487Google Scholar
  31. 31.
    Hsu RJ, Ho JY, Cha TL, Yu DS, Wu CL, Huang WP, Chu P, Chen YH, Chen JT, Yu CP (2012) WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/beta-catenin pathway. PLoS One 7(10):e47649.  https://doi.org/10.1371/journal.pone.0047649 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wells G (2004) The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis. Cancer. 2002 Feb 15;94(4):973-9. http://www.ohrica/programs/clinical_epidemiologyoxford.htm
  33. 33.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefGoogle Scholar
  34. 34.
    Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16.  https://doi.org/10.1186/1745-6215-8-16 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Strauss M, Lukas J, Bartek J (1995) Unrestricted cell cycling and cancer. Nat Med 1(12):1245–1246CrossRefGoogle Scholar
  36. 36.
    Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T, Wang YE, Clark AB, Kunkel TA, van Harn T, Xia B, Correll M, Quackenbush J, Livingston DM, Gygi SP, Sicinski P (2011) A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 474(7350):230–234.  https://doi.org/10.1038/nature10155 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Han EK, Sgambato A, Jiang W, Zhang YJ, Santella RM, Doki Y, Cacace AM, Schieren I, Weinstein IB (1995) Stable overexpression of cyclin D1 in a human mammary epithelial cell line prolongs the S-phase and inhibits growth. Oncogene 10(5):953–961PubMedGoogle Scholar
  38. 38.
    Parry D, Bates S, Mann DJ, Peters G (1995) Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. EMBO J 14(3):503–511CrossRefGoogle Scholar
  39. 39.
    Atadja P, Wong H, Veillete C, Riabowol K (1995) Overexpression of cyclin D1 blocks proliferation of normal diploid fibroblasts. Exp Cell Res 217(2):205–216.  https://doi.org/10.1006/excr.1995.1080 CrossRefPubMedGoogle Scholar
  40. 40.
    Freeman RS, Estus S, Johnson EM Jr (1994) Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12(2):343–355.  https://doi.org/10.1016/0896-6273(94)90276-3 CrossRefPubMedGoogle Scholar
  41. 41.
    Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847CrossRefGoogle Scholar
  42. 42.
    Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101(21):1446–1452.  https://doi.org/10.1093/jnci/djp335 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  • Zeyan Li
    • 1
  • Jikai Liu
    • 1
  • Xiang Zhang
    • 1
  • Liang Fang
    • 1
  • Cong Zhang
    • 1
  • Zhao Zhang
    • 1
  • Lei Yan
    • 1
  • Yueqing Tang
    • 1
    Email author
  • Yidong Fan
    • 1
    Email author
  1. 1.Department of UrologyQilu Hospital of Shandong UniversityJinanPeople’s Republic of China

Personalised recommendations