Advertisement

Identification of Differentially Expressed Proteins from Smokeless Tobacco Addicted Patients Suffering from Oral Squamous Cell Carcinoma

  • Uzma Urooj Malik
  • Imtiaz Ather Siddiqui
  • Amber Ilyas
  • Zehra Hashim
  • Lisa Staunton
  • Anna Kwasnik
  • Stephen R. Pennington
  • Shamshad ZarinaEmail author
Original Article
  • 94 Downloads

Abstract

Oral squamous cell carcinoma (OSCC) is the eight most common malignancy worldwide with an incidence rate of 40% in south-east Asia. Lack of effective diagnostic tools at early stage and disease recurrence despite extensive treatments are main reasons for high mortality and low survival rates. The aim of current study was to identify differentially expressed proteins to explore potential candidate biomarkers having diagnostic significance. We performed comparative proteomic analysis of paired protein samples (cancerous buccal mucosa and adjacent normal tissue) from OSCC patients using a combination of two dimensional gel electrophoresis and Mass spectrometric analysis. On the basis of spot intensity, seventeen proteins were found to be consistently differentially expressed among most of the samples which were identified through mass spectrometry. For validation of identified proteins, expression level of stratifin was determined using immuno-histochemistry and Western blot analysis. All identified proteins were analyzed by STRING to explore their interaction. Among uniquely identified proteins in this study, at least two candidate markers (Ig Kappa chain C region and Isoform 2 of fructose bisphosphate aldolase A) were found to be novel with respect to OSCC which can be explored further. Results presented in current study are likely to contribute in understanding the involvement of these molecules in carcinogenesis apart from their plausible role as diagnostic/prognostic markers.

Keywords

Oral squamous cell carcinoma Tissue proteomics Differential expression Biomarker Smokeless tobacco 

Notes

Acknowledgements

Financial assistance was provided by Higher Education Commission, Pakistan (Project no. 20-1809). UUM was recipient of EMEA scholarship (SGA 2012-2642) funded by the Erasmus Mundus Programme of EU. Authors acknowledge the technical assistance offered by Kieran Wynne, UCD Conway Institute.

Compliance with Ethical Standards

Ethical Approval

The study was approved by IRB, (NCP-108), University of Karachi and guidelines proposed by the Declaration of Helsinki were followed.

Declaration

The work described has not been published previously and the authors declare no competing financial interests.

References

  1. 1.
    Ferlay J, Soerjomataram R, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefGoogle Scholar
  2. 2.
    Johnson NW, Jayasekara P, Amarasinghe AA (2011) Squamous cell carcinoma and precursor lesions of the oral cavity: epidemiology and aetiology. Periodontol 2000 57:19–37Google Scholar
  3. 3.
    Ni YH, Ding L, Hu QG, Hua ZC (2015) Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl 9:86–97CrossRefPubMedGoogle Scholar
  4. 4.
    Zygogianni AG, Kyrgias G, Karakitsos P, Psyrri A, Kouvaris J, Kelekis N, Kouloulias V (2011) Oral squamous cell cancer: early detection and the role of alcohol and smoking. Head Neck Oncol 3:2CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liaquat N, Jaffar AM, Haroon MZ, Khan MB, Habib H (2016) Knowledge and perception of areca/smokeless tobacco users about oral cancer. J Ayub Med Coll Abbottabad 28:164–167PubMedGoogle Scholar
  6. 6.
    Imam SZ, Nawaz H, Sepah YJ, Pabaney AH, Ilyas M, Ghaffar S (2007) Use of smokeless tobacco among groups of Pakistani medical students - a cross sectional study. BMC Public Health 7:231–231CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    de Camargo CM, Voti L, Guerra-Yi M, Chapuis F, Mazuir M, Curado MP (2010) Oral cavity cancer in developed and in developing countries: population-based incidence. Head Neck 32:357–367Google Scholar
  8. 8.
    Nair U, Bartsch H, Nair J (2004) Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis 19:251–262CrossRefPubMedGoogle Scholar
  9. 9.
    Alamgir M, Jamal Q, Jafarey N, Mirza T (2013) Clinicopathological parameters of 50 oral squamous cell carcinoma cases in Karachi. Pak J Medic Dentis 2:3–8Google Scholar
  10. 10.
    Johann DJ, McGuigan MD, Patel AR, Tomov S, Ross S, Conrads TP et al (2004) Clinical proteomics and biomarker discovery. Ann N Y Acad Sci 1022:295–305CrossRefPubMedGoogle Scholar
  11. 11.
    G.A.o.t.W.M. Association (2014) World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. J Amer College Dentists 81:14Google Scholar
  12. 12.
    Deschler DG, Day T (2008) TNM staging of head and neck cancer and neck dissection classification. Amer Acad Otolaryngol–Head & Neck Surg Found:10–23Google Scholar
  13. 13.
    Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Reed NA, Oh D-J, Czymmek KJ, Duncan MK (2001) An immunohistochemical method for the detection of proteins in the vertebrate lens. J Immunol Methods 253:243–252CrossRefPubMedGoogle Scholar
  15. 15.
    Wang Z, Jiang L, Huang C, Li Z, Chen L, Gou L, Chen P, Tong A, Tang M, Gao F, Shen J, Zhang Y, Bai J, Zhou M, Miao D, Chen Q (2008) Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma. Mol Cell Proteomics 7:1639–1650CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dorsey K, Agulnik M (2013) Promising new molecular targeted therapies in head and neck cancer. Drugs 73:315–325CrossRefPubMedGoogle Scholar
  17. 17.
    Pandey JP, Kistner-Griffin E, Black L, Namboodiri AM, Iwasaki I, Kasuga Y et al (2014) IGKC and FcγR genotypes and humoral immunity to HER2 in breast cancer. Immunobiology 219:113–117CrossRefPubMedGoogle Scholar
  18. 18.
    Whiteside TL, Ferrone S (2012) For breast cancer prognosis, immunoglobulin kappa chain surfaces to the top. Clin Cancer Res 18:2417–2419CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schmidt M, Hellwig B, Hammad S, Othman A, Lohr M, Chen Z, Boehm D, Gebhard S, Petry I, Lebrecht A, Cadenas C, Marchan R, Stewart JD, Solbach C, Holmberg L, Edlund K, Kultima HG, Rody A, Berglund A, Lambe M, Isaksson A, Botling J, Karn T, Muller V, Gerhold-Ay A, Cotarelo C, Sebastian M, Kronenwett R, Bojar H, Lehr HA, Sahin U, Koelbl H, Gehrmann M, Micke P, Rahnenfuhrer J, Hengstler JG (2012) A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin κ C as a compatible prognostic marker in human solid tumors. Clin Cancer Res 18:2695–2703CrossRefPubMedGoogle Scholar
  20. 20.
    Chen X, Yang TT, Zhou Y, Wang W, Qiu XC, Gao J, Li CX, Long H, Ma BA, Ma Q, Zhang XZ, Yang LJ, Fan QY (2014) Proteomic profiling of osteosarcoma cells identifies ALDOA and SULT1A3 as negative survival markers of human osteosarcoma. Mol Carcinog 53:138–144CrossRefPubMedGoogle Scholar
  21. 21.
    Soga T (2013) Cancer metabolism: key players in metabolic reprogramming. Cancer Sci 104:275–281CrossRefPubMedGoogle Scholar
  22. 22.
    Ma D, Chen X, Zhang PY, Zhang H, Wei LJ, Hu S et al (2017) Upregulation of the ALDOA/DNA-PK/p53 pathway by dietary restriction suppresses tumor growth. Oncogene 37:1041CrossRefPubMedGoogle Scholar
  23. 23.
    Ye F, Chen Y, Xia L, Lian J, Yang S (2018) Aldolase a overexpression is associated with poor prognosis and promotes tumor progression by the epithelial-mesenchymal transition in colon cancer. Biochem Biophys Res Commun 497:639–645CrossRefPubMedGoogle Scholar
  24. 24.
    Li C, Xiao Z, Chen Z, Zhang X, Li J, Wu X, Li X, Yi H, Li M, Zhu G, Liang S (2006) Proteome analysis of human lung squamous carcinoma. Proteomics 6:547–558CrossRefPubMedGoogle Scholar
  25. 25.
    Du S, Guan Z, Hao L, Song Y, Wang L, Gong L et al (2014) Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration. PLoS One 9:e85804CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Frei E (2011) Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetol Metab Syndr 3:11CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JC, Hartung G et al (1997) Plasma protein (albumin) catabolism by the tumor itself—implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol 26:77–100CrossRefPubMedGoogle Scholar
  28. 28.
    Gupta D, Lis CG (2010) Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr J 9:69CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Thiel UJE, Feltens R, Adryan B, Gieringer R, Brochhausen C, Schuon R, Fillies T, Grus F, Mann WJ, Brieger J (2011) Analysis of differentially expressed proteins in oral squamous cell carcinoma by MALDI-TOF MS. J Oral Pathol Med 40:369–379CrossRefPubMedGoogle Scholar
  30. 30.
    Alam H, Gangadaran P, Bhate AV, Chaukar DA, Sawant SS, Tiwari R et al (2011) Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PLoS One 6:e27767CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wei KJ, Zhang L, Yang X, Zhong LP, Zhou XJ, Pan HY, Li J, Chen WT, Zhang ZY (2009) Overexpression of cytokeratin 17 protein in oral squamous cell carcinoma in vitro and in vivo. Oral Dis 15:111–117CrossRefPubMedGoogle Scholar
  32. 32.
    Xu L, Chen S, Bergan R (2006) MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 25:2987–2998CrossRefPubMedGoogle Scholar
  33. 33.
    Lo Muzio L, Leonardi R, Mariggio M, Mignogna M, Rubini C, Vinella A et al (2004) HSP 27 as possible prognostic factor in patients with oral squamous cell carcinoma. Histol Histopathol 19:119–128PubMedGoogle Scholar
  34. 34.
    Zamanian M, Veerakumarasivam A, Abdullah S, Rosli R (2013) Calreticulin and cancer. Pathol & Oncol Res 19:149–154CrossRefGoogle Scholar
  35. 35.
    Chiang WF, Hwang TZ, Hour TC, Wang LH, Chiu CC, Chen HR et al (2013) Calreticulin, an endoplasmic reticulum-resident protein, is highly expressed and essential for cell proliferation and migration in oral squamous cell carcinoma. Oral Oncol 49:534–541CrossRefPubMedGoogle Scholar
  36. 36.
    Benzinger A, Muster N, Koch HB, Yates JR, Hermeking H (2005) Targeted proteomic analysis of 14-3-3ς, a p53 effector commonly silenced in cancer. Mol Cell Proteomics 4:785–795CrossRefPubMedGoogle Scholar
  37. 37.
    Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I (2008) Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia-the authors reported a combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepato-Gastroenterology 55:2016PubMedGoogle Scholar
  38. 38.
    Perathoner A, Pirkebner D, Brandacher G, Spizzo G, Stadlmann S, Obrist P, Margreiter R, Amberger A (2005) 14-3-3σ expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Clin Cancer Res 11:3274–3279CrossRefPubMedGoogle Scholar
  39. 39.
    Laimer K, Blassnig N, Spizzo G, Kloss F, Rasse M, Obrist P, Schäfer G, Perathoner A, Margreiter R, Amberger A (2009) Prognostic significance of 14-3-3σ expression in oral squamous cell carcinoma (OSCC). Oral Oncol 45:127–134CrossRefPubMedGoogle Scholar
  40. 40.
    Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al (1997) 14-3-3σIs a p53-regulated inhibitor of G2/M progression. Mol Cell 1:3–11CrossRefPubMedGoogle Scholar
  41. 41.
    Yang HY, Wen YY, Chen CH, Lozano G, Lee MH (2003) 14-3-3σ positively regulates p53 and suppresses tumor growth. Mol Cell Biol 23:7096–7107CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rothenberg SM, Ellisen LW (2012) The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest 122:1951–1957CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chanthammachat P, Promwikorn W, Pruegsanusak K, Roytrakul S, Srisomsap C, Chokchaichamnankit D, Svasti J, Boonyaphiphat P, K S, Thongsuksai P (2013) Comparative proteomic analysis of oral squamous cell carcinoma and adjacent non-tumour tissue from Thailand. Arch Oral Biol 58:1677–1685CrossRefPubMedGoogle Scholar
  44. 44.
    Ralhan R, Masui O, DeSouza LV, Matta A, Macha M, Siu K (2011) Identification of proteins secreted by head and neck cancer cell lines using LC-MS/MS: strategy for discovery of candidate serological biomarkers. Proteomics 11:2363–2376CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  1. 1.National Center for ProteomicsUniversity of KarachiKarachiPakistan
  2. 2.School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
  3. 3.Jinnah Postgraduate Medical CentreKarachiPakistan

Personalised recommendations