SOCS1 and its Potential Clinical Role in Tumor

  • Jie Ying
  • Xiaoyan Qiu
  • Yu Lu
  • Miaomiao ZhangEmail author


Suppressor of cytokine signaling1 (SOCS1), as a member of SOCS family, has been widely studied in recent years. It has been found that SOCS1 not only participates in cell signaling, but also in ubiquitination mediated protein degradation process. Both of these two functions play an important role in the growth and proliferation of cells. Therefore, researchers speculated that SOCS1 also played an important role in tumors. This review mainly focuses on the structure, transcriptional regulation and functions of SOCS1 protein, and finally describes the possible clinical role of SOCS1 protein in tumors.


SOCS1 Cell signaling Ubiquitination Tumors 


Author Contributions

Jie Ying compiled the complete first draft of the manuscript. Xiaoyan Qiu and Yu Lu provided critiques on the work, and then finalized the article before submission. Miaomiao Zhang as a corresponding author is responsible for the communication with the editor.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare no conflict of interest.


  1. 1.
    Lemmon MA, Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117Google Scholar
  2. 2.
    Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387(6636):921–924Google Scholar
  3. 3.
    Hilton DJ (1999) Negative regulators of cytokine signal transduction. Cell Mol Life Sci 55(12):1568–1577Google Scholar
  4. 4.
    Okochi O, Hibi K, Sakai M, Inoue S, Takeda S, Kaneko T et al (2003) Methylation-mediated silencing of SOCS-1 gene in hepatocellular carcinoma derived from cirrhosis. Clin Cancer Res 9(14):5295–5298Google Scholar
  5. 5.
    Chu PY, Yeh CM, Hsu NC, Chang YS, Chang JG, Yeh KT (2010) Epigenetic alteration of the SOCS1 gene in hepatocellular carcinoma. Swiss Med Wkly 140(3):w13065Google Scholar
  6. 6.
    Li Z, Metze D, Nashan D, Müllertidow C, Serve HL, Poremba C et al (2004) Expression of SOCS-1, suppressor of cytokine Signalling-1, in human melanoma. J Investig Dermatol 123(4):737–745Google Scholar
  7. 7.
    Huang FJ, Steeg PS, Price JE, Chiu WT, Chou PC, Xie K, Sawaya R, Huang S (2008) Molecular basis for the critical role of suppressor of cytokine signaling-1 in melanoma brain metastasis. Cancer Res 68(23):9634–9642Google Scholar
  8. 8.
    Oshimo Y, Kuraoka K, Nakayama H, Kitadai Y, Yoshida K, Chayama K, Yasui W (2004) Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 112(6):1003–1009Google Scholar
  9. 9.
    Shao N, Ma G, Zhang J, Zhu W (2018) miR-221-5p enhances cell proliferation and metastasis through post-transcriptional regulation of SOCS1 in human prostate cancer. BMC Urol 18:14. Google Scholar
  10. 10.
    Linossi EM, Nicholson SE (2012) The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life 64(4):316–323Google Scholar
  11. 11.
    Kamura T, Sato S, Haque D, Liu L, Jr KW, Conaway RC et al (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 12(24):3872–3881Google Scholar
  12. 12.
    Babon JJ, Sabo JK, Soetopo A, Yao S, Bailey MF, Zhang JG, Nicola NA, Norton RS (2008) The SOCS box domain of SOCS3: structure and interaction with the elonginBC-cullin5 ubiquitin ligase. J Mol Biol 381(4):928–940Google Scholar
  13. 13.
    Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC et al (2004) VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18(24):3055–3065Google Scholar
  14. 14.
    Bullock AN, Debreczeni JÉ, Edwards AM, Sundström M, Knapp S (2006) Crystal structure of the SOCS2-Elongin C-Elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proc Natl Acad Sci U S A 103(20):7637–7642Google Scholar
  15. 15.
    Babon JJ, Mcmanus EJ, Yao S, Desouza DP, Mielke LA, Sprigg NS et al (2006) The structure of SOCS3 reveals the basis of the extended SH2 domain function and identifies an unstructured insertion that regulates stability. Mol Cell 22(2):205–216Google Scholar
  16. 16.
    Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14(12):2816–2826Google Scholar
  17. 17.
    Kershaw NJ, Murphy JM, Liau NP, Varghese LN, Laktyushin A, Whitlock EL et al (2013) SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition. Nat Struct Mol Biol 20(4):469–476Google Scholar
  18. 18.
    Babon JJ, Kershaw NJ, Murphy JM, Varghese LN, Laktyushin A, Young SN, Lucet IS, Norton RS, Nicola NA (2012) Suppression of cytokine Signalling by SOCS3: characterisation of the mode of inhibition and the basis of its specificity. Immunity 36(2):239–250Google Scholar
  19. 19.
    Yandava CN, Pillari A, Drazen JM (1999) Radiation hybrid and cytogenetic mapping of SOCS1 and SOCS2 to chromosomes 16p13 and 12q, respectively. Genomics 61(1):108–111Google Scholar
  20. 20.
    Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K, Akira S, Kishimoto T (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387(6636):924–929Google Scholar
  21. 21.
    Jegalian AG, Wu H (2002) Regulation of Socs gene expression by the proto-oncoprotein GFI-1B: two routes for STAT5 target gene induction by erythropoietin. J Biol Chem 277(3):2345–2352Google Scholar
  22. 22.
    Sporri B, Kovanen PE, Sasaki A, Yoshimura A, Leonard WJ (2001) JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling. Blood 97(1):221–226Google Scholar
  23. 23.
    Losman JA, Chen XP, Hilton D, Rothman P (1999) Cutting edge: SOCS-1 is a potent inhibitor of IL-4 signal transduction. J Immunol 162(7):3770–3774Google Scholar
  24. 24.
    Dickensheets H, Vazquez N, Sheikh F, Gingras S, Murray PJ, Ryan JJ, Donnelly RP (2007) Suppressor of cytokine signaling-1 is an IL-4-inducible gene in macrophages and feedback inhibits IL-4 signaling. Genes Immun 8(1):21–27Google Scholar
  25. 25.
    Dickensheets HL, Venkataraman C, Schindler U, Donnelly RP (1999) Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proc Natl Acad Sci U S A 96(19):10800–10805Google Scholar
  26. 26.
    Hebenstreit D, Luft P, Schmiedlechner A, Regl G, Frischauf AM, Aberger F, Duschl A, Horejs-Hoeck J (2003) IL-4 and IL-13 induce SOCS-1 gene expression in A549 cells by three functional STAT6-binding motifs located upstream of the transcription initiation site. J Immunol 171(11):5901–5907Google Scholar
  27. 27.
    Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387(6636):917–921Google Scholar
  28. 28.
    Qing Y, Costapereira AP, Watling D, Stark GR (2005) Role of tyrosine 441 of interferon-gamma receptor subunit 1 in SOCS-1-mediated attenuation of STAT1 activation. J Biol Chem 280(3):1849–1853Google Scholar
  29. 29.
    Starr R, Fuchsberger M, Lau LS, Uldrich AP, Goradia A, Willson TA, Verhagen AM, Alexander WS, Smyth MJ (2009) SOCS-1 binding to tyrosine 441 of IFN-gamma receptor subunit 1 contributes to the attenuation of IFN-gamma signaling in vivo. J Immunol 183(7):4537–4544Google Scholar
  30. 30.
    Song M, Shuai K (1998) The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem 273(52):35056–35062Google Scholar
  31. 31.
    Crespo A, Filla MB, Russell SW, Murphy WJ (2000) Indirect induction of suppressor of cytokine signalling-1 in macrophages stimulated with bacterial lipopolysaccharide: partial role of autocrine/paracrine interferon-alpha/beta. Biochem J 349(Pt 1):99–104Google Scholar
  32. 32.
    Ram PA, Waxman DJ (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274(50):35553–35561Google Scholar
  33. 33.
    Hansen JA, Lindberg K, Hilton DJ, Nielsen JH, Billestrup N (1999) Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Mol Endocrinol 13(11):1832–1843Google Scholar
  34. 34.
    Zhang J, Li H, Yu JP, Wang SE, Ren XB (2012) Role of SOCS1 in tumor progression and therapeutic application. Int J Cancer 130(9):1971–1980Google Scholar
  35. 35.
    Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T, Yoshizaki K, Naka T, Kishimoto T (1998) Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc Natl Acad Sci U S A 95(22):13130–13134Google Scholar
  36. 36.
    Chen XP, Losman JA, Cowan S, Donahue E, Fay S, Vuong BQ, Nawijn MC, Capece D, Cohan VL, Rothman P (2002) Pim serine/threonine kinases regulate the stability of Socs-1 protein. Proc Natl Acad Sci U S A 99(4):2175–2180Google Scholar
  37. 37.
    Toniato E, Chen XP, Losman J, Flati V, Donahue L, Rothman P (2002) TRIM8/GERP RING finger protein interacts with SOCS-1. J Biol Chem 277(40):37315–37322Google Scholar
  38. 38.
    Wu T, Xie M, Wang X, Jiang X, Li J, Huang H (2012) miR-155 modulates TNF-α-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone 51(3):498–505Google Scholar
  39. 39.
    Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells through targeting SOCS1. Immunity 30(1):80–91Google Scholar
  40. 40.
    Yin Y, Liu W, Dai Y (2015) SOCS3 and its role in associated diseases. Hum Immunol 76(10):775–780Google Scholar
  41. 41.
    Ilangumaran S, Ramanathan S, Rottapel R (2004) Regulation of the immune system by SOCS family adaptor proteins. Semin Immunol 16(6):351–365Google Scholar
  42. 42.
    Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS, Starr R, Nicholson SE, Metcalf D, Nicola NA (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci U S A 95(1):114–119Google Scholar
  43. 43.
    Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M et al (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J 18(2):375–385Google Scholar
  44. 44.
    Ulevitch RJ, Tobias PS (2003) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13(1):437–457Google Scholar
  45. 45.
    Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406(6797):782–787Google Scholar
  46. 46.
    Yuk JM, Jo EK (2011) Toll-like receptors and innate immunity. J Bacteriol Virol 41(4):225Google Scholar
  47. 47.
    Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680Google Scholar
  48. 48.
    Ziegler-Heitbrock HW (1995) Molecular mechanism in tolerance to lipopolysaccharide. J Inflamm 45(1):13–26Google Scholar
  49. 49.
    Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T, Seki E, Sato S, Takeuchi O, Takeda K, Akira S, Yamanishi K, Kawase I, Nakanishi K, Kishimoto T (2002) SOCS-1 participates in negative regulation of LPS responses. Immunity 17(5):677–687Google Scholar
  50. 50.
    Mansell A, Smith R, Doyle SL, Gray P, Fenner JE, Crack PJ, Nicholson SE, Hilton DJ, O'Neill LAJ, Hertzog PJ (2006) Suppressor of cytokine signaling 1 negatively regulates toll-like receptor signaling by mediating mal degradation. Nat Immunol 7(2):148–155Google Scholar
  51. 51.
    Mostecki J, Showalter BM, Rothman PB (2005) Early growth Response-1 regulates lipopolysaccharide-induced suppressor of cytokine Signaling-1 transcription. J Biol Chem 280(4):2596–2605. Google Scholar
  52. 52.
    Babon J, Sabo J, Zhang JG, Nicola N, Norton R (2009) The SOCS box encodes a hierarchy of affinities for Cullin5: implications for ubiquitin ligase formation and cytokine signalling suppression. J Mol Biol 387(1):162–174Google Scholar
  53. 53.
    Sepulveda PD, Ilangumaran S, Rottapel R (2000) Suppressor of cytokine Signaling-1 inhibits VAV function through protein degradation. J Biol Chem 275(19):14005–14008Google Scholar
  54. 54.
    Monni R, Santos SC, Mauchauffe M, Berger R, Ghysdael J, Gouilleux F et al (2001) The TEL-Jak2 oncoprotein induces Socs1 expression and altered cytokine response in Ba/F3 cells. Oncogene 20(7):849–858Google Scholar
  55. 55.
    Frantsve J, Schwaller J, Sternberg DW, Kutok J, Gilliland DG (2001) Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 21(10):3547–3557Google Scholar
  56. 56.
    De SP, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R (1999) Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation. EMBO J 18(4):904–915Google Scholar
  57. 57.
    Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T et al (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. (Doctoral dissertation, Rennes 1)Google Scholar
  58. 58.
    Linossi EM, Babon JJ, Hilton DJ, Nicholson SE (2013) Suppression of cytokine signaling: the SOCS perspective. Cytokine Growth Factor Rev 24(3):241–248Google Scholar
  59. 59.
    Callus BA, Matheyprevot B (1998) Interleukin-3-induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors. Blood 91(9):3182Google Scholar
  60. 60.
    Verdier F, Chrétien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S et al (1998) Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem 273(43):28185Google Scholar
  61. 61.
    Wu QY, Zhu YY, Liu Y, Wei F, Tong YX, Cao J et al (2018) CUEDC2, a novel interacting partner of the SOCS1 protein, plays important roles in the leukaemogenesis of acute myeloid leukaemia. Cell Death & Disease 9(7):774Google Scholar
  62. 62.
    Wu LM, Zhang F, Zhou L, Yang Z, Xie HY, Zheng SS (2010) Predictive value of CpG island methylator phenotype for tumor recurrence in hepatitis B virus-associated hepatocellular carcinoma following liver transplantation. BMC Cancer 10(1):1–8Google Scholar
  63. 63.
    Nomoto S, Kinoshita T, Kato K, Otani S, Kasuya H, Takeda S, Kanazumi N et al (2007) Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma. Br J Cancer 97(9):1260Google Scholar
  64. 64.
    Hussain S, Singh N, Salam I, Bandil K, Yuvaraj M, Akbar BM et al (2011) Methylation-mediated gene silencing of suppressor of cytokine signaling-1 (SOCS-1) gene in esophageal squamous cell carcinoma patients of Kashmir valley. J Recept Signal Transduct Res 31(2):147–156Google Scholar
  65. 65.
    Sobti RC, Singh N, Hussain S, Suri V, Nijhawan R, Bharti AC, Bharadwaj M, Das BC (2011) Aberrant promoter methylation and loss of suppressor of cytokine signalling-1 gene expression in the development of uterine cervical carcinogenesis. Cell Oncol 34(6):533–543Google Scholar
  66. 66.
    Chen CY, Tsay W, Tang JL, Shen HL, Lin SW, Huang SY, Yao M, Chen YC, Shen MC, Wang CH, Tien HF (2003) SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosom Cancer 37(3):300–305Google Scholar
  67. 67.
    Zhang XH, Yang L, Liu XJ, Zhan Y, Pan YX, Wang XZ et al (2018) Association between methylation of tumor suppressor gene SOCS1 and acute myeloid leukemia. Oncol Rep.
  68. 68.
    Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG (2003) SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 101(7):2784–2788Google Scholar
  69. 69.
    Depil S, Saudemont A, Quesnel B (2003) SOCS-1 gene methylation is frequent but does not appear to have prognostic value in patients with multiple myeloma. Leukemia 17(8):1678–1679Google Scholar
  70. 70.
    Komazaki T, Nagai H, Emi M, Terada Y, Yabe A, Jin E et al (2004) Hypermethylation-associated inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human pancreatic cancers. Jpn J Clin Oncol 34(4):191–194Google Scholar
  71. 71.
    Liu S, Ren S, Howell P, Fodstad O, Riker AI (2008) Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling. Pigment Cell Melanoma Res 21(5):545–558Google Scholar
  72. 72.
    Sakamoto LH, De CB, Cajaiba M, Soares FA, Vettore AL (2015) MT1G hypermethylation: a potential prognostic marker for hepatoblastoma. Pediatr Res 67(4):387–393Google Scholar
  73. 73.
    Zhang JG, Metcalf D, Rakar S, Asimakis M, Greenhalgh CJ, Willson TA, Starr R, Nicholson SE, Carter W, Alexander WS, Hilton DJ, Nicola NA (2001) The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proc Natl Acad Sci U S A 98(23):13261–13265Google Scholar
  74. 74.
    Shen L, Evelkabler K, Strube R, Chen SY (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotechnol 22(12):1546–1553Google Scholar
  75. 75.
    Evelkabler K, Song XT, Aldrich M, Huang XF, Chen SY (2006) SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Investig 116(1):90–100Google Scholar
  76. 76.
    Hong B, Ren W, Song XT, Evelkabler K, Chen SY, Huang XF (2009) Human suppressor of cytokine signaling 1 controls immunostimulatory activity of monocyte-derived dendritic cells. Cancer Res 69(20):8076–8084Google Scholar
  77. 77.
    Hanada T, Tanaka K, Matsumura Y, Yamauchi M, Nishinakamura H, Aburatani H, Mashima R, Kubo M, Kobayashi T, Yoshimura A (2005) Induction of hyper Th1 cell-type immune responses by dendritic cells lacking the suppressor of cytokine signaling-1 gene. J Immunol 174(7):4325–4332Google Scholar
  78. 78.
    Chikuma S, Kanamori M, Mise-Omata S, Yoshimura A (2017) Suppressors of cytokine signaling: potential immune checkpoint molecules for cancer immunotherapy. Cancer Sci 108(4):574–580Google Scholar
  79. 79.
    Hashimoto M, Ayada T, Kinjyo I, Hiwatashi K, Yoshida H, Okada Y, Kobayashi T, Yoshimura A (2009) Silencing of SOCS1 in macrophages suppresses tumor development by enhancing antitumor inflammation. Cancer Sci 100(4):730–736Google Scholar
  80. 80.
    Lesinski GB, Zimmerer JM, Kreiner M, Trefry J, Bill MA, Young GS et al (2010) Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells. BMC Cancer 10(1):142Google Scholar
  81. 81.
    Zitzmann K, Brand S, De Toni EN, Baehs S, Göke B, Meinecke J et al (2007) SOCS1 silencing enhances antitumor activity of type I IFNs by regulating apoptosis in neuroendocrine tumor cells. Cancer Res 67(10):5025–5032Google Scholar
  82. 82.
    Sasi W, Wen GJ, Sharma A, Mokbel K (2010) Higher expression levels of SOCS 1,3,4,7 are associated with earlier tumour stage and better clinical outcome in human breast cancer. BMC Cancer 10(1):1–13Google Scholar
  83. 83.
    Roman-Gomez J, Jimenez-Velasco A, Castillejo J, Cervantes F, Barrios M, Colomer D et al (2004) The suppressor of cytokine signaling-1 is constitutively expressed in chronic myeloid leukemia and correlates with poor cytogenetic response to interferon-alpha. Haematologica 89(1):42–48Google Scholar

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  1. 1.Department of Clinical Research CenterXuyi People’s HospitalXuyiPeople’s Republic of China

Personalised recommendations