Advertisement

N-Acetylglucosaminyltransferase III (GnT-III) but not N-Acetylgalactosaminyltransferase-6 and 8 are Differentially Expressed in Invasive and In Situ Ductal Carcinoma of the Breast

  • Antônio Felix da Silva Filho
  • Gabriela Souto Vieira-de-Mello
  • Petra Barros dos Santos
  • Moacyr Jesus Barreto de Melo RêgoEmail author
  • Alfredo Ribeiro-Silva
  • Eduardo Isidoro Carneiro Beltrão
Original Article
  • 30 Downloads

Abstract

Mammary carcinoma is the most common malignant tumor in women, and it is the leading cause of mortality. In tumor context, glycosylation promotes post translational modifications necessary for cell progression, emerging as a relevant tumor hallmarker. This study aimed to analyze the association between polypeptide N-acetylgalactosaminyltransferase-6 (ppGalNAc-T6), −T8, N-acetylglucosaminyltransferase III (GnT-III) expression, Phaseolus vulgaris-leucoagglutinin (PHA-L), wheat germ agglutinin (WGA) and peanut agglutinin (PNA) staining with clinic-histopathological factors from patients with pure ductal carcinoma in situ (DCIS) and DCIS with invasive ductal carcinoma (DCIS-IDC) of breast. Formalin-fixed and paraffin-embedded samples (n = 109) were analyzed. In pure DCIS samples GnT-III was over-expressed in comedo lesions (p = 0.007). In DCIS-IDC, GnT-III expression was associated with high nuclear grade tumors (p = 0.039) while the presence of PHA-L and WGA were inversely related to HER-2 expression (p = 0.001; p = 0.036, respectively). These findings pointed to possible involvement of GnT-III, ppGalNAc-T8, L-PHA and WGA as probes in prognostic evaluation of DCIS.

Keywords

Glycosiltranferases Glycocode Lectins In situ ductal carcinoma Invasive ductal carcinoma 

Abbreviation

CEN 17

Centromere 17

CISH

Chromogenic in situ hybridization

DAB

Diaminobenzidine

DCIS

Ductal carcinoma in situ

DCIS-IDC

Ductal carcinoma in situ with invasive ductal carcinoma

ER

Estrogen receptor

GalNAc

N-acetylgalactosamine

GnT-III

N-acetylglucosaminyltransferase III

GnT-V

N-acetylglucosaminyltransferase V

HER-2

Human epidermal growth factor receptor-type 2

PHA-L

Phaseolus vulgaris-leucoagglutinin

PNA

Peanut agglutinin

PpGalNAc-T6

Polypeptide N-acetylgalactosaminyltransferase-6

PpGalNAc-T8

Polypeptide N-acetylgalactosaminyltransferase-8

PpGalNAc-Ts

Polypeptide N-acetylgalactosaminyltransferases

PR

Progesterone receptor

TMA

Tissue microarray

WGA

Wheat germ agglutinin

Notes

Acknowledgments

Authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil) for financial support; CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) for schollarship and financial support and Deisy Mara da Silva for technical assistance.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12253_2019_593_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 45 kb)

References

  1. 1.
    Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27:57–92.  https://doi.org/10.3109/10409239209082559 CrossRefGoogle Scholar
  2. 2.
    Triantafyllou A, Fletcher D, Scott J (2004) Glycosylations in demilunar and central acinar cells of the submandibular salivary gland of ferret investigated by lectin histochemistry. Arch Oral Biol 49:697–703.  https://doi.org/10.1016/j.archoralbio.2004.04.005 CrossRefGoogle Scholar
  3. 3.
    Yang X, Liu S, Yan Q (2013) Role of fucosyltransferase IV in epithelial–mesenchymal transition in breast cancer cells. Cell Death Dis 4:735.  https://doi.org/10.1038/cddis.2013.241 CrossRefGoogle Scholar
  4. 4.
    Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867.  https://doi.org/10.1016/j.cell.2006.08.019 CrossRefGoogle Scholar
  5. 5.
    Kariya Y, Gu J (2011) N-glycosylation of ß4 integrin controls the adhesion and motility of keratinocytes. PLoS One 6:27084.  https://doi.org/10.1371/journal.pone.0027084 CrossRefGoogle Scholar
  6. 6.
    Kim Y, Park J, Lee H, Lee SY, Kim SJ (2012) TGF-β sensitivity is determined by N-linked glycosylation of the type II TGF-β receptor. Biochem J 445:403–411.  https://doi.org/10.1042/BJ20111923 CrossRefGoogle Scholar
  7. 7.
    Xu Q, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, Du Y, Gu J (2012) Roles of N-Acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by transforming growth factor β1 (TGF-β1) in epithelial cell lines. J Biol Chem 287:16563–16574.  https://doi.org/10.1074/jbc.M111.262154 CrossRefGoogle Scholar
  8. 8.
    Guo H, Johnson H, Randolph M, Lee I, Pierce M (2009) Knockdown of GnT-Va expression inhibits ligand-induced downregulation of the epidermal growth factor receptor and intracellular signaling by inhibiting receptor endocytosis. Glycobiology 19:547–559.  https://doi.org/10.1093/glycob/cwp023 CrossRefGoogle Scholar
  9. 9.
    Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Annu Rev Biochem 72:673–691.  https://doi.org/10.1146/annurev.biochem.72.121801.161809 CrossRefGoogle Scholar
  10. 10.
    Gozde K, Attila G, Ozlem K (2009) Human Cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:1000601.  https://doi.org/10.1371/journal.pcbi.1000601 CrossRefGoogle Scholar
  11. 11.
    Li M, Song L, Qin X (2010) Glycan changes: cancer metastasis and anti-cancer vaccines. J Biosci 35:665–673.  https://doi.org/10.1007/s12038-010-0073-8 CrossRefGoogle Scholar
  12. 12.
    Victorino VJ, Campos FC, Herrera AC, Colado Simão AN, Cecchini AL, Panis C, Cecchini R (2013) Overexpression of HER-2/neu protein attenuates the oxidative systemic profile in women diagnosed with breast cancer. Tumor Biol 35:3025–3034.  https://doi.org/10.1007/s13277-013-1391-x CrossRefGoogle Scholar
  13. 13.
    Butt S, Harlid S, Borgquist S, Ivarsson M, Landberg G, Dillner J-M (2012) Genetic predisposition, parity, age at first childbirth and risk for breast câncer. BMC Res Notes 5:414.  https://doi.org/10.1186/1756-0500-5-414 CrossRefGoogle Scholar
  14. 14.
    Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, Gaudet M, Schmidt MK, Broeks A, Cox A, Fasching PA, Hein R, Spurdle AB, Blows F, Driver K, Flesch-Janys D, Heinz J, Sinn P, Vrieling A, Heikkinen T, Aittomäki K, Heikkilä P, Blomqvist C, Lissowska J, Peplonska B, Chanock S, Figueroa J, Brinton L, Hall P, Czene K, Humphreys K, Darabi H, Liu J, van ‘t Veer LJ, van Leeuwen FE, Andrulis IL, Glendon G, Knight JA, Mulligan AM, O’Malley FP, Weerasooriya N, John EM, Beckmann MW, Hartmann A, Weihbrecht SB, Wachter DL, Jud SM, Loehberg CR, Baglietto L, English DR, Giles GG, McLean CA, Severi G, Lambrechts D, Vandorpe T, Weltens C, Paridaens R, Smeets A, Neven P, Wildiers H, Wang X, Olson JE, Cafourek V, Fredericksen Z, Kosel M, Vachon C, Cramp HE, Connley D, Cross SS, Balasubramanian SP, Reed MWR, Dörk T, Bremer M, Meyer A, Karstens JH, Ay A, Park-Simon TW, Hillemanns P, Arias Pérez JI, Rodríguez PM, Zamora P, Benítez J, Ko YD, Fischer HP, Hamann U, Pesch B, Brüning T, Justenhoven C, Brauch H, Eccles DM, Tapper WJ, Gerty SM, Sawyer EJ, Tomlinson IP, Jones A, Kerin M, Miller N, McInerney N, Anton-Culver H, Ziogas A, Shen CY, Hsiung CN, Wu PE, Yang SL, Yu JC, Chen ST, Hsu GC, Haiman CA, Henderson BE, le Marchand L, Kolonel LN, Lindblom A, Margolin S, Jakubowska A, Lubiński J, Huzarski T, Byrski T, Górski B, Gronwald J, Hooning MJ, Hollestelle A, van den Ouweland AMW, Jager A, Kriege M, Tilanus-Linthorst MMA, Collée M, Wang-Gohrke S, Pylkäs K, Jukkola-Vuorinen A, Mononen K, Grip M, Hirvikoski P, Winqvist R, Mannermaa A, Kosma VM, Kauppinen J, Kataja V, Auvinen P, Soini Y, Sironen R, Bojesen SE, Dynnes Ørsted D, Kaur-Knudsen D, Flyger H, Nordestgaard BG, Holland H, Chenevix-Trench G, Manoukian S, Barile M, Radice P, Hankinson SE, Hunter DJ, Tamimi R, Sangrajrang S, Brennan P, McKay J, Odefrey F, Gaborieau V, Devilee P, Huijts PEA, Tollenaar RAEM, Seynaeve C, Dite GS, Apicella C, Hopper JL, Hammet F, Tsimiklis H, Smith LD, Southey MC, Humphreys MK, Easton D, Pharoah P, Sherman ME, Garcia-Closas M (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the breast cancer association consortium studies. J Natl Cancer Inst 103:250–263.  https://doi.org/10.1093/jnci/djq526 CrossRefGoogle Scholar
  15. 15.
    Wei Z, Er-li G, Yi-li Z, Zhai Q, Zou ZY, Guo GL, Chen GR, Zheng HM, Huang GL, Zhang XH (2012) Different distribution of breast ductal carcinoma in situ, ductal carcinoma in situ with microinvasion, and invasion breast câncer. World J Surg Oncol 10:262.  https://doi.org/10.1186/1477-7819-10-262 CrossRefGoogle Scholar
  16. 16.
    Liu Y, Pérez M, Schootman M, Aft RL, Gillanders WE, Ellis MJ, Jeffe DB (2010) A longitudinal study of factors associated with perceived risk of recurrence in women with ductal carcinoma in situ and early stage invasive breast cancer. Breast Cancer Res Treat 124:835–844.  https://doi.org/10.1007/s10549-010-0912-1 CrossRefGoogle Scholar
  17. 17.
    Beaman E, Brooks SA (2014) The extended ppGalNAc-T family and their functional involvement in the metastatic cascade. Histol Histopathol 29:293–304.  https://doi.org/10.14670/HH-29.293 Google Scholar
  18. 18.
    Pinho SS, Oliveira P, Cabral J, Carvalho S, Huntsman D, Gärtner F, Seruca R, Reis CA, Oliveira C (2012) Loss and recovery of Mgat3 and GnT-III mediated E-cadherin N-glycosylation is a mechanism involved in epithelial-mesenchymal-epithelial transitions. PLoS One 7:33191.  https://doi.org/10.1371/journal.pone.0033191 CrossRefGoogle Scholar
  19. 19.
    Andrade CG, Cabral Filho PE, Tenório DP, Santos BS, Beltrão EI, Fontes A, Carvalho LB Jr (2013) Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry. Int J Nanomedicine 8:4623.  https://doi.org/10.2147/IJN.S51065 Google Scholar
  20. 20.
    Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P (2010) Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 12:204.  https://doi.org/10.1186/bcr2577 CrossRefGoogle Scholar
  21. 21.
    Ribeiro-Silva A, Moutinho MAH, Moura B, Vale FR, Zucoloto S (2006) Expression of checkpoint kinase 2 in breast carcinomas: correlation with key regulators of tumor cell proliferation, angiogenesis, and survival. Histol Histopathol 21:373-82.  https://doi.org/10.14670/HH-21.373
  22. 22.
    Santos PB, Zanetti JS, Silva AR, Beltrão EIC (2012) Beta 1 integrin predicts survival in breast cancer: a clinicopathological and immunohistochemical study. Diagn Pathol 7:104.  https://doi.org/10.1186/1746-1596-7-104 CrossRefGoogle Scholar
  23. 23.
    Hammond ME, Hayes DF, Dowsett M (2010) American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–95. https://www.ncbi.nlm.nih.gov/pubmed/16437383
  24. 24.
    Wolff AC, Hammond ME, Schwartz JN (2007) American society of clinical oncology/college of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131:18–43. https://doi.org/10.1043/15432165(2007)131[18:ASOCCO]2.0.CO;2Google Scholar
  25. 25.
    Oliveira-Costa JP, Zanetti JS, Oliveira LR, Soares FA, Ramalho LZ, Silva Ramalho F, Garcia SB, Ribeiro-Silva A (2010) Significance of topoisomerase IIIβ expression in breast ductal carcinomas: strong associations with disease-specific survival and metastasis. Hum Pathol 41:1624–1630.  https://doi.org/10.1016/j.humpath.2010.01.027 CrossRefGoogle Scholar
  26. 26.
    Dosaka-Akita H, Miyoshi E, Suzuki O, Itoh T, Katoh H, Taniguchi N (2004) Expression of N-acetylglucosaminyltransferase V is associated with prognosis and histology in non-small cell lung cancers. Clin Cancer Res 10:1773–1779.  https://doi.org/10.1158/1078-0432.CCR-1047-3 CrossRefGoogle Scholar
  27. 27.
    Kitada S, Yamada S, Kuma A, Ouchi S, Tasaki T, Nabeshima A, Noguchi H, Wang KY, Shimajiri S, Nakano R, Izumi H, Kohno K, Matsumoto T, Sasaguri Y (2013) Polypeptide nacetylgalactosaminyl transferase 3 independently predicts high-grade tumours and poor prognosis in patients with renal cell carcinomas. Br J Cancer 23:472–481.  https://doi.org/10.1038/bjc.2013.331 CrossRefGoogle Scholar
  28. 28.
    Christiansen MN, Chik J, Lee L, Abrahams JL, Packer NH (2014) Cell surface protein glycosylation in cancer. Proteomics 14:525–546.  https://doi.org/10.1002/pmic.201300387 CrossRefGoogle Scholar
  29. 29.
    Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, Richardson A, Violette S, Nikolskaya T, Nikolsky Y, Bauerlein EL, Hahn WC, Gelman RS, Allred C, Bissell MJ, Schnitt S, Polyak K (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13:394–406.  https://doi.org/10.1016/j.ccr.2008.03.007 CrossRefGoogle Scholar
  30. 30.
    Lange T, Samatov TR, Tonevitsky AG, Schumacher U (2014) Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells. Carbohydr Res 389:39–45.  https://doi.org/10.1016/j.carres.2014.01.010 CrossRefGoogle Scholar
  31. 31.
    Akama R, Sato Y, Kariya Y, Isaji T, Fukuda T, Lu L, Taniguchi N, Ozawa M, Gu J (2008) N-acetylglucosaminyltransferase III expression is regulated by cell-cell adhesion via the E-cadherin-catenin-actin complex. Proteomics 8:83221–83228.  https://doi.org/10.1002/pmic.200800038 CrossRefGoogle Scholar
  32. 32.
    Pinho SS, Reis CA, Paredes J, Magalhães AM, Ferreira AC, Figueiredo J, Xiaogang W, Carneiro F, Gärtner F, Seruca R (2009) The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum Mol Genet 18:2599–2608.  https://doi.org/10.1093/hmg/ddp194 CrossRefGoogle Scholar
  33. 33.
    Pinho SS, Figueiredo J, Cabral J, Carvalho S, Dourado J, Magalhães A, Gärtner F, Mendonfa AM, Isaji T, Gu J, Carneiro F, Seruca R, Taniguchi N, Reis CA (2013) E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim Biophys Acta 1830:2690–2700.  https://doi.org/10.1016/j.bbagen.2012.10.021 CrossRefGoogle Scholar
  34. 34.
    Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271.  https://doi.org/10.1038/modpathol.3800528 CrossRefGoogle Scholar
  35. 35.
    Ozkan-Gurdal S, Cabioglu N, Ozcinar B, Muslumanoglu M, Ozmen V, Kecer M, Yavuz E, Igci A (2014) Factors predicting microinvasion in ductal carcinoma in situ. Asian Pac J Cancer Prev 15:55–60 https://www.ncbi.nlm.nih.gov/pubmed/24528005 CrossRefGoogle Scholar
  36. 36.
    Shekhar MP, Tait L, Pauley RJ, Wu GS, Santner SJ, Nangia-Makker P, Shekhar V, Nassar H, Visscher DW, Heppner GH, Miller FR (1991) Comedo-ductal carcinoma in situ: a paradoxical role for programmed cell death. Cancer Biol Cancer Res Treat 18:11–17 https://www.ncbi.nlm.nih.gov/pubmed/18787417 CrossRefGoogle Scholar
  37. 37.
    Vieira-de-Mello GS, Silva Filho AF, dos Santos PB, Rêgo MJBM, Beltrão EIC (2013) Lectin histochemistry reveals changes in carbohydrate expression on morphological types of breast ductal carcinoma in situ. J Cytol Histol 4:3.  https://doi.org/10.4172/2157-7099.1000179 Google Scholar
  38. 38.
    Duggal S, Robin J, Julian TB (2013) Ductal carcinoma in situ: an overview. Expert Rev Anticancer Ther 13:955–962.  https://doi.org/10.1586/14737140.2013.820557 CrossRefGoogle Scholar
  39. 39.
    Freire T, Berois N, Sóñora C, Varangot M, Barrios E, Osinaga E (2006) UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (ppGalNAc-T6) mRNA as a potential new marker for detection of bone marrow-disseminated breast cancer cells. Int J Cancer 119:1383–1388.  https://doi.org/10.1002/ijc.21959 CrossRefGoogle Scholar
  40. 40.
    Raman J, Guan Y, Perrine CL, Gerken TA, Tabak LA (2012) UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminyltransferases: completion of the family tree. Glycobiology 22:768–777.  https://doi.org/10.1093/glycob/cwr183 CrossRefGoogle Scholar
  41. 41.
    Wu C, Guo X, Wang W, Wang Y, Shan Y, Zhang B, Song W, Ma S, Ge J, Deng H, Zhu M (2010) N-Acetylgalactosaminyltransferase-14 as a potential biomarker for breast cancer by immunohistochemistry. BMC Cancer 10:123.  https://doi.org/10.1186/1471-2407-10-123 CrossRefGoogle Scholar
  42. 42.
    Steven A, Leisz S, Massa C, Iezzi M, Lattanzio R, Lamolinara A, Bukur J, Müller A, Hiebl B, Holzhausen HJ, Seliger B (2013) HER-2/neu mediates oncogenic transformation via altered CREB expression and function. Mol Cancer Res 11:1462–1477.  https://doi.org/10.1158/1541-7786.MCR-13-0125 CrossRefGoogle Scholar
  43. 43.
    Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu overexpressing cells. Nat Cell Biol 3:245–252.  https://doi.org/10.1038/35060032 CrossRefGoogle Scholar
  44. 44.
    Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP, Pawson T, Muthuswamy SK (2006) Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8:1235–1245.  https://doi.org/10.1038/ncb1485 CrossRefGoogle Scholar
  45. 45.
    Handerson T, Camp R, Harigopal M, Rimm D, Pawelek J (2005) β1, 6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin Cancer Res 11:2969–2973.  https://doi.org/10.1158/1078-0432 CrossRefGoogle Scholar
  46. 46.
    Li D, Li Y, Wu X, Li Q, Yu J, Gen J, Zhang XL (2008) Knockdown of Mgat5 inhibits breast cancer cell growth with activation of CD4+ T cells and macrophages. J Immunol 180:3158–3165.  https://doi.org/10.4049/jimmunol.180.5.3158 CrossRefGoogle Scholar
  47. 47.
    Chung M, Chang HR, Bland KI, Wanebo HJ (1996) Younger women with breast carcinoma have a poorer prognosis than older women. Cancer 77:97–103.  https://doi.org/10.1002/(SICI)1097-0142(19960101)77:1<97::AID-CNCR16>3.0.CO;2-3 CrossRefGoogle Scholar
  48. 48.
    Shannona C, Smithb IE (2003) Breast cancer in adolescents and young women. Eur J Cancer 39:2632–2642.  https://doi.org/10.1016/S0959-8049(03)00669-5 CrossRefGoogle Scholar
  49. 49.
    Rêgo MJBM, Vieira de Mello GS, da Silva Santos CA, Chammas R, Beltrão EIC (2013) Implications on glycobiological aspects of tumor hypoxia in breast ductal carcinoma in situ. Med Mol Morphol 46:92–96.  https://doi.org/10.1007/s00795-013-0013-4 CrossRefGoogle Scholar
  50. 50.
    Abbott KL, Aoki K, Lim JM, Porterfield M, Johnson R, O'Regan RM, Wells L, Tiemeyer M, Pierce M (2008) Targeted glycoproteomic identification of biomarkers for human breast carcinoma. J Proteome Res 7:1470–1480.  https://doi.org/10.1021/pr700792g CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  • Antônio Felix da Silva Filho
    • 1
  • Gabriela Souto Vieira-de-Mello
    • 1
    • 2
  • Petra Barros dos Santos
    • 2
  • Moacyr Jesus Barreto de Melo Rêgo
    • 1
    • 3
    • 4
    Email author
  • Alfredo Ribeiro-Silva
    • 5
  • Eduardo Isidoro Carneiro Beltrão
    • 2
    • 3
  1. 1.Immunomodulation and New Therapeutic Approaches LaboratoryFederal University of PernambucoRecifeBrazil
  2. 2.Biomarkers in cancer LaboratoryFederal University of PernambucoRecifeBrazil
  3. 3.Department of Biochemistry, Biology Sciences CentreFederal University of PernambucoRecifeBrazil
  4. 4.Nucleo de Pesquisa para Inovacao Terapeutica (NUPIT-SG)RecifeBrazil
  5. 5.Department of Pathology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil

Personalised recommendations