Advertisement

MicroRNA Expression in Focal Nodular Hyperplasia in Comparison with Cirrhosis and Hepatocellular Carcinoma

  • Gábor LendvaiEmail author
  • Tímea Szekerczés
  • Benedek Gyöngyösi
  • Krisztina Schlachter
  • Endre Kontsek
  • Adrián Pesti
  • Attila Patonai
  • Klára Werling
  • Ilona Kovalszky
  • Zsuzsa Schaff
  • András Kiss
Original Article
  • 121 Downloads

Abstract

The liver disease focal nodular hyperplasia (FNH) has several histological features that resemble hepatic cirrhosis. Since cirrhosis may develop further into hepatocellular carcinoma (HCC) contrary to FNH, the aim of the present study was to identify microRNAs (miRNA), which, by their altered expression levels, may be associated with the benign, tumor-like nature of FNH. Altogether 106 surgically removed formalin-fixed paraffin-embedded liver samples were selected, including 22 FNH, 45 cirrhosis, 24 HCC and 15 normal liver tissues. Etiology of the cases of cirrhosis and HCC includes hepatitis C and alcoholism and the HCC cases developed in cirrhotic livers. Relative expression levels of 14 miRNAs were determined using TaqMan MicroRNA Assays. In comparison to normal liver, the levels of miR-34a and miR-224 were elevated not only in FNH but also in cirrhosis and HCC, while the expression of miR-17-5p, miR-18a and miR-210 was decreased in FNH. Further, the levels of miR-21 and miR-222 were increased in cirrhosis and HCC but were decreased in FNH and the expression of miR-17-5p, miR-18a, miR-195 and miR-210 was decreased in FNH as compared with cirrhosis and/or HCC. In conclusion, the elevation of miR-34a and miR-224 may be associated with both benign and malignant proliferative processes, nevertheless the increased expression of oncomiRs miR-21 and miR-222 in cirrhosis and HCC but not in FNH may be related to malignant processes of the liver. The decreased levels of miR-18a, miR-195 and miR-210 may further differentiate FNH from cirrhosis, reflecting the different pathogenesis of these two entities contrary to some histologically similar features.

Keywords

Focal nodular hyperplasia Hepatic cirrhosis Hepatocellular carcinoma microRNA Chronic hepatitis C 

Notes

Acknowledgements

The authors thank Mrs. Elvira Kálé Rigóné for the English proofreading.

Funding

This study was funded by grants from OTKA K101435 and K108548 from the National Scientific Research Fund.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12253_2018_528_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)

References

  1. 1.
    Chen SL, Zheng MH, Shi KQ, Yang T, Chen YP (2013) A new strategy for treatment of liver fibrosis: letting MicroRNAs do the job. BioDrugs 27(1):25–34CrossRefGoogle Scholar
  2. 2.
    Mormone E, George J, Nieto N (2011) Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem Biol Interact 193(3):225–231CrossRefGoogle Scholar
  3. 3.
    Roncalli M, Sciarra A, Tommaso LD (2016) Benign hepatocellular nodules of healthy liver: focal nodular hyperplasia and hepatocellular adenoma. Clin Mol Hepatol 22(2):199–211CrossRefGoogle Scholar
  4. 4.
    Balabaud C, Al-Rabih WR, Chen PJ, Evason K, Ferrell L, Hernandez-Prera JC, Huang SF, Longerich T, Park YN, Quaglia A, Schirmacher P, Sempoux C, Thung SN, Torbenson M, Wee A, Yeh MM, Yeh SH, Le Bail B, Zucman-Rossi J, Bioulac-Sage P (2013) Focal nodular hyperplasia and hepatocellular adenoma around the world viewed through the scope of the Immunopathological classification. Int J Hepatol 2013:268625CrossRefGoogle Scholar
  5. 5.
    Kondo F, Fukusato T, Kudo M (2014) Pathological diagnosis of benign hepatocellular nodular lesions based on the new World Health Organization classification. Oncology 87(Suppl 1):37–49CrossRefGoogle Scholar
  6. 6.
    Sempoux C, Balabaud C, Bioulac-Sage P (2014) Pictures of focal nodular hyperplasia and hepatocellular adenomas. World J Hepatol 6(8):580–595CrossRefGoogle Scholar
  7. 7.
    Venturi A, Piscaglia F, Vidili G, Flori S, Righini R, Golfieri R, Bolondi L (2007) Diagnosis and management of hepatic focal nodular hyperplasia. J Ultrasound 10(3):116–127CrossRefGoogle Scholar
  8. 8.
    Nahm CB, Ng K, Lockie P, Samra JS, Hugh TJ (2011) Focal nodular hyperplasia--a review of myths and truths. J Gastrointest Surg 15(12):2275–2283CrossRefGoogle Scholar
  9. 9.
    Sohrabpour AA, Mohamadnejad M, Malekzadeh R (2012) Review article: the reversibility of cirrhosis. Aliment Pharmacol Ther 36(9):824–832CrossRefGoogle Scholar
  10. 10.
    Liou IW (2014) Management of end-stage liver disease. Med Clin North Am 98(1):119–152CrossRefGoogle Scholar
  11. 11.
    Murakami Y, Kawada N (2017) MicroRNAs in hepatic pathophysiology. Hepatol Res 47(1):60–69CrossRefGoogle Scholar
  12. 12.
    Bandiera S, Pfeffer S, Baumert TF, Zeisel MB (2015) miR-122--a key factor and therapeutic target in liver disease. J Hepatol 62(2):448–457CrossRefGoogle Scholar
  13. 13.
    Hu J, Xu Y, Hao J, Wang S, Li C, Meng S (2012) MiR-122 in hepatic function and liver diseases. Protein Cell 3(5):364–371CrossRefGoogle Scholar
  14. 14.
    Lee CH, Kim JH, Lee SW (2014) The role of microRNAs in hepatitis C virus replication and related liver diseases. J Microbiol 52(6):445–451CrossRefGoogle Scholar
  15. 15.
    Huan L, Liang LH, He XH (2016) Role of microRNAs in inflammation-associated liver cancer. Cancer Biol Med 13(4):407–425CrossRefGoogle Scholar
  16. 16.
    Lendvai G, Jarmay K, Karacsony G, Halasz T, Kovalszky I, Baghy K, Wittmann T, Schaff Z, Kiss A (2014) Elevated miR-33a and miR-224 in steatotic chronic hepatitis C liver biopsies. World J Gastroenterol 20(41):15343–15350CrossRefGoogle Scholar
  17. 17.
    Gyugos M, Lendvai G, Kenessey I, Schlachter K, Halasz J, Nagy P, Garami M, Jakab Z, Schaff Z, Kiss A (2014) MicroRNA expression might predict prognosis of epithelial hepatoblastoma. Virchows Arch 464(4):419–427CrossRefGoogle Scholar
  18. 18.
    Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10(9):542–552CrossRefGoogle Scholar
  19. 19.
    Halasz T, Horvath G, Par G, Werling K, Kiss A, Schaff Z, Lendvai G (2015) miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan. World J Gastroenterol 21(25):7814–7823CrossRefGoogle Scholar
  20. 20.
    Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE (2008) Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 10(3):203–211CrossRefGoogle Scholar
  21. 21.
    Borel F, Konstantinova P, Jansen PL (2012) Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol 56(6):1371–1383CrossRefGoogle Scholar
  22. 22.
    Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, Zucman-Rossi J (2008) MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 47(6):1955–1963CrossRefGoogle Scholar
  23. 23.
    Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537–2545CrossRefGoogle Scholar
  24. 24.
    Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250CrossRefGoogle Scholar
  25. 25.
    Bioulac-Sage P, Balabaud C, Bedossa P, Scoazec JY, Chiche L, Dhillon AP, Ferrell L, Paradis V, Roskams T, Vilgrain V, Wanless IR, Zucman-Rossi J (2007) Pathological diagnosis of liver cell adenoma and focal nodular hyperplasia: Bordeaux update. J Hepatol 46(3):521–527CrossRefGoogle Scholar
  26. 26.
    Maillette de Buy Wenniger L, Terpstra V, Beuers U (2010) Focal nodular hyperplasia and hepatic adenoma: epidemiology and pathology. Dig Surg 27(1):24–31CrossRefGoogle Scholar
  27. 27.
    Pinzani M (2015) Pathophysiology of liver fibrosis. Dig Dis 33(4):492–497CrossRefGoogle Scholar
  28. 28.
    He Y, Huang C, Zhang SP, Sun X, Long XR, Li J (2012) The potential of microRNAs in liver fibrosis. Cell Signal 24(12):2268–2272CrossRefGoogle Scholar
  29. 29.
    Roderburg C, Luedde T (2014) Circulating microRNAs as markers of liver inflammation, fibrosis and cancer. J Hepatol 61(6):1434–1437CrossRefGoogle Scholar
  30. 30.
    Tian XF, Ji FJ, Zang HL, Cao H (2016) Activation of the miR-34a/SIRT1/p53 signaling pathway contributes to the Progress of liver fibrosis via inducing apoptosis in hepatocytes but not in HSCs. PLoS One 11(7):e0158657CrossRefGoogle Scholar
  31. 31.
    Ding J, Li M, Wan X, Jin X, Chen S, Yu C, Li Y (2015) Effect of miR-34a in regulating steatosis by targeting PPARalpha expression in nonalcoholic fatty liver disease. Sci Rep 5:13729CrossRefGoogle Scholar
  32. 32.
    Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM, Dejean A (2010) miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A 107(1):264–269CrossRefGoogle Scholar
  33. 33.
    Han Y, Meng F, Venter J, Wu N, Wan Y, Standeford H, Francis H, Meininger C, Greene J Jr, Trzeciakowski JP, Ehrlich L, Glaser S, Alpini G (2016) miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J Hepatol 64(6):1295–1304CrossRefGoogle Scholar
  34. 34.
    Yan G, Li B, Xin X, Xu M, Ji G, Yu H (2015) MicroRNA-34a promotes hepatic stellate cell activation via targeting ACSL1. Med Sci Monit 21:3008–3015CrossRefGoogle Scholar
  35. 35.
    Sato Y, Harada K, Ikeda H, Fijii T, Sasaki M, Zen Y, Nakanuma Y (2009) Hepatic stellate cells are activated around central scars of focal nodular hyperplasia of the liver--a potential mechanism of central scar formation. Hum Pathol 40(2):181–188CrossRefGoogle Scholar
  36. 36.
    Cheng J, Zhou L, Xie QF, Xie HY, Wei XY, Gao F, Xing CY, Xu X, Li LJ, Zheng SS (2010) The impact of miR-34a on protein output in hepatocellular carcinoma HepG2 cells. Proteomics 10(8):1557–1572CrossRefGoogle Scholar
  37. 37.
    Ma D, Tao X, Gao F, Fan C, Wu D (2012) miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncol Lett 4(3):483–488CrossRefGoogle Scholar
  38. 38.
    Wang Y, Ren J, Gao Y, Ma JZ, Toh HC, Chow P, Chung AY, Ooi LL, Lee CG (2013) MicroRNA-224 targets SMAD family member 4 to promote cell proliferation and negatively influence patient survival. PLoS One 8(7):e68744CrossRefGoogle Scholar
  39. 39.
    Li Q, Ding C, Chen C, Zhang Z, Xiao H, Xie F, Lei L, Chen Y, Mao B, Jiang M, Li J, Wang D, Wang G (2014) miR-224 promotion of cell migration and invasion by targeting Homeobox D 10 gene in human hepatocellular carcinoma. J Gastroenterol Hepatol 29(4):835–842CrossRefGoogle Scholar
  40. 40.
    Scisciani C, Vossio S, Guerrieri F, Schinzari V, De Iaco R, de Meo D’Onorio P, Cervello M, Montalto G, Pollicino T, Raimondo G, Levrero M, Pediconi N (2012) Transcriptional regulation of miR-224 upregulated in human HCCs by NFkappaB inflammatory pathways. J Hepatol 56(4):855–861CrossRefGoogle Scholar
  41. 41.
    Gyongyosi B, Vegh E, Jaray B, Szekely E, Fassan M, Bodoky G, Schaff Z, Kiss A (2014) Pretreatment MicroRNA level and outcome in Sorafenib-treated hepatocellular carcinoma. J Histochem Cytochem 62(8):547–555CrossRefGoogle Scholar
  42. 42.
    Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33(6):1126–1133CrossRefGoogle Scholar
  43. 43.
    Wong QW, Ching AK, Chan AW, Choy KW, To KF, Lai PB, Wong N (2010) MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res 16(3):867–875CrossRefGoogle Scholar
  44. 44.
    He C, Dong X, Zhai B, Jiang X, Dong D, Li B, Jiang H, Xu S, Sun X (2015) MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget 6(30):28867–28881PubMedPubMedCentralGoogle Scholar
  45. 45.
    Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, Zeng Y, Sun B, Qian H, Chen L, Wu M, Su C, Chen J (2013) MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 337(2):226–236CrossRefGoogle Scholar
  46. 46.
    Yang YF, Wang F, Xiao JJ, Song Y, Zhao YY, Cao Y, Bei YH, Yang CQ (2014) MiR-222 overexpression promotes proliferation of human hepatocellular carcinoma HepG2 cells by downregulating p27. Int J Clin Exp Med 7(4):893–902PubMedPubMedCentralGoogle Scholar
  47. 47.
    Melnik BC (2015) MiR-21: an environmental driver of malignant melanoma? J Transl Med 13:202CrossRefGoogle Scholar
  48. 48.
    Tili E, Michaille JJ, Croce CM (2013) MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 253(1):167–184CrossRefGoogle Scholar
  49. 49.
    Ogawa T, Enomoto M, Fujii H, Sekiya Y, Yoshizato K, Ikeda K, Kawada N (2012) MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut 61(11):1600–1609CrossRefGoogle Scholar
  50. 50.
    Kim Y, Jho EH (2017) Deubiquitinase YOD1: the potent activator of YAP in hepatomegaly and liver cancer. BMB Rep 50(6):281–282CrossRefGoogle Scholar
  51. 51.
    Patel SH, Camargo FD, Yimlamai D (2017) Hippo signaling in the liver regulates organ size, cell fate, and Carcinogenesis. Gastroenterology 152(3):533–545CrossRefGoogle Scholar
  52. 52.
    Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest AR, Kolle G, Gabrielli B, Grimmond SM (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9(8):R127CrossRefGoogle Scholar
  53. 53.
    Liu L, Cai X, Liu E, Tian X, Tian C (2017) MicroRNA-18a promotes proliferation and metastasis in hepatocellular carcinoma via targeting KLF4. Oncotarget 8(40):68263–68269PubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang M, Zhang J, Tong L, Ma X, Qiu X (2015) MiR-195 is a key negative regulator of hepatocellular carcinoma metastasis by targeting FGF2 and VEGFA. Int J Clin Exp Pathol 8(11):14110–14120PubMedPubMedCentralGoogle Scholar
  55. 55.
    Song LY, Ma YT, Wu CF, Wang CJ, Fang WJ, Liu SK (2017) MicroRNA-195 activates hepatic stellate cells in vitro by targeting Smad7. Biomed Res Int 2017:1945631Google Scholar
  56. 56.
    Ivan M, Huang X (2014) miR-210: fine-tuning the hypoxic response. Adv Exp Med Biol 772:205–227CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  • Gábor Lendvai
    • 1
    Email author
  • Tímea Szekerczés
    • 1
  • Benedek Gyöngyösi
    • 1
  • Krisztina Schlachter
    • 2
  • Endre Kontsek
    • 1
  • Adrián Pesti
    • 1
  • Attila Patonai
    • 3
  • Klára Werling
    • 4
  • Ilona Kovalszky
    • 5
  • Zsuzsa Schaff
    • 1
  • András Kiss
    • 1
  1. 1.2nd Department of PathologySemmelweis UniversityBudapestHungary
  2. 2.Department of PathologyNational Institute of OncologyBudapestHungary
  3. 3.Department of Transplantation and SurgerySemmelweis UniversityBudapestHungary
  4. 4.2nd Department of Internal MedicineSemmelweis UniversityBudapestHungary
  5. 5.1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary

Personalised recommendations