Pathology & Oncology Research

, Volume 25, Issue 2, pp 559–566 | Cite as

Non-target Genes Regulate miRNAs-Mediated Migration Steering of Colorectal Carcinoma

  • Sohair M. SalemEmail author
  • Ahmed R. Hamed
  • Alaaeldin G. Fayez
  • Ghada Nour Eldeen
Original Article


MicroRNAs (miRNAs) trigger a two-layer regulatory network directly or through transcription factors and their co-regulators. Unlike miR-375, the role of miR-145 and miR-224 in inhibiting or driving cancer cell migration is controversial. This study is a step towards addressing the potential of miR-375, miR-145 and miR-224 expression modulation to inhibit colorectal carcinoma (CRC) cells migration in vitro through regulation of non-target genes VEGFA, TGFβ1, IGF1, CD105 and CD44. Transwell migration assay results revealed a significant subdue of migration ability of cells transfected with miR-375 and miR-145 mimics and miR-224 inhibitor. Real time PCR data showed that expression of VEGFA, TGFβ1, IGF1, CD105 and CD44 was downregulated as a consequence of exogenous re-expression of miR-375 and inhibition of miR-224. On the other hand, ectopic expression of miR-145 did not affect VEGFA, TGFβ1 and CD44 expression, while it elevated CD105 and suppressed IGF1 expression. MAP4K4, a predicted target of miR-145, was validated as a target that could play a role in miR-145-mediated regulation of migration. At mRNA level, no change was observed in expression of MAP4K4 in cells with restored expression of miR-145, while western blotting analysis revealed a 25% reduction of protein level. By applying luciferase reporter assay, a significant decrease in luciferase activity was observed, supporting that miR-145 directly target 3’ UTR of MAP4K4. The study highlighted the involvement of non-target genes VEGFA, TGFβ1, IGF1, CD105 and CD44 in mediating anti- and pro-migratory effect of miR-375 and miR-224, respectively, and validated MAP4K4 as a direct target of anti-migratory miR-145.


MiRNAs, colorectal carcinoma Non-target genes MAP4K4 Migration 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. However, we appreciate the role of our host institution, National Research Centre, for supporting our work through our equipped labs. Special and deep thanks to Dr. Hanaa H. Rady, Chemistry of Natural Compounds Department, National Research Centre, for her help and valuable recommendations in data interpretation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Arner P, Kulyte A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11:276–288CrossRefGoogle Scholar
  2. 2.
    Bassoy EY, Chiusolo V, Jacquemin G, Riccadonna C, Walker PR, Martinvalet D (2016) Glioma Stemlike cells enhance the killing of glioma differentiated cells by cytotoxic lymphocytes. PLoS One 11:e0153433CrossRefGoogle Scholar
  3. 3.
    Benetti A, Berenzi A, Gambarotti M, Garrafa E, Gelati M, Dessy E, Portolani N, Piardi T, Giulini SM, Caruso A, Invernici G, Parati EA, Nicosia R, Alessandri G (2008) Transforming growth factor-beta1 and CD105 promote the migration of hepatocellular carcinoma-derived endothelium. Cancer Res 68:8626–8634CrossRefGoogle Scholar
  4. 4.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. 5.
    Broderick JA, Zamore PD (2011) MicroRNA therapeutics. Gene Ther 18:1104–1110CrossRefGoogle Scholar
  6. 6.
    Chen Y, Gou X, Ke X, Cui H, Chen Z (2012) Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I. PLoS One 7:e40965CrossRefGoogle Scholar
  7. 7.
    Collins CS, Hong J, Sapinoso L, Zhou Y, Liu Z, Micklash K, Schultz PG, Hampton GM (2006) A small interfering RNA screen for modulators of tumor cell motility identifies MAP4K4 as a promigratory kinase. Proc Natl Acad Sci U S A 103:3775–3780CrossRefGoogle Scholar
  8. 8.
    Cui F, Wang S, Lao I et al (2016) miR-375 inhibits the invasion and metastasis of colorectal cancer via targeting SP1 and regulating EMT-associated genes. Oncol Rep 36:487–493CrossRefGoogle Scholar
  9. 9.
    Deng B, Wang B, Fang J, Zhu X, Cao Z, Lin Q, Zhou L, Sun X (2016) MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Sci Rep 6:28301CrossRefGoogle Scholar
  10. 10.
    Dong R, Liu X, Zhang Q, Jiang Z, Li Y, Wei Y, Li Y, Yang Q, Liu J, Wei JJ, Shao C, Liu Z, Kong B (2014) miR-145 inhibits tumor growth and metastasis by targeting metadherin in high-grade serous ovarian carcinoma. Oncotarget 5:10816–10829CrossRefGoogle Scholar
  11. 11.
    Emdad L, Das SK, Dasgupta S et al (2013) AEG-1/MTDH/LYRIC: signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis. Adv Cancer Res 120:75–111CrossRefGoogle Scholar
  12. 12.
    Faltejskova P, Svoboda M, Srutova K, Mlcochova J, Besse A, Nekvindova J, Radova L, Fabian P, Slaba K, Kiss I, Vyzula R, Slaby O (2012) Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J Cell Mol Med 16:2655–2666CrossRefGoogle Scholar
  13. 13.
    Feng Y, Zhu J, Ou C, Deng Z, Chen M, Huang W, Li L (2014) MicroRNA-145 inhibits tumour growth and metastasis in colorectal cancer by targeting fascin-1. Br J Cancer 110:2300–2309CrossRefGoogle Scholar
  14. 14.
    Fix LN, Shah M, Efferth T, Farwell MA, Zhang B (2010) MicroRNA expression profile of MCF-7 human breast cancer cells and the effect of green tea polyphenon-60. Cancer Genomics Proteomics 7:261–277Google Scholar
  15. 15.
    Gao P, Xing AY, Zhou GY, Zhang TG, Zhang JP, Gao C, Li H, Shi DB (2013) The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene 32:491–501CrossRefGoogle Scholar
  16. 16.
    Gao Y, Feng B, Han S, Zhang K, Chen J, Li C, Wang R, Chen L (2016) The roles of MicroRNA-141 in human cancers: from diagnosis to treatment. Cell Physiol Biochem 38:427–448CrossRefGoogle Scholar
  17. 17.
    Gotte M, Mohr C, Koo CY et al (2010) miR-145-dependent targeting of junctional adhesion molecule a and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 29:6569–6580CrossRefGoogle Scholar
  18. 18.
    Hu Y, Leo C, Yu S, Huang BCB, Wang H, Shen M, Luo Y, Daniel-Issakani S, Payan DG, Xu X (2004) Identification and functional characterization of a novel human misshapen/Nck interacting kinase-related kinase, hMINK beta. J Biol Chem 279:54387–54397CrossRefGoogle Scholar
  19. 19.
    Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424CrossRefGoogle Scholar
  20. 20.
    Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6:590–610CrossRefGoogle Scholar
  21. 21.
    Ke TW, Hsu HL, Wu YH et al (2014) MicroRNA-224 suppresses colorectal cancer cell migration by targeting Cdc42. Dis Markers 2014:617150CrossRefGoogle Scholar
  22. 22.
    Lee NY, Ray B, How T, Blobe GC (2008) Endoglin promotes transforming growth factor beta-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC. J Biol Chem 283:32527–32533CrossRefGoogle Scholar
  23. 23.
    Li Q, Ding C, Chen C, Zhang Z, Xiao H, Xie F, Lei L, Chen Y, Mao B, Jiang M, Li J, Wang D, Wang G (2014) miR-224 promotion of cell migration and invasion by targeting Homeobox D 10 gene in human hepatocellular carcinoma. J Gastroenterol Hepatol 29:835–842CrossRefGoogle Scholar
  24. 24.
    Ling H, Pickard K, Ivan C, Isella C, Ikuo M, Mitter R, Spizzo R, Bullock MD, Braicu C, Pileczki V, Vincent K, Pichler M, Stiegelbauer V, Hoefler G, Almeida MI, Hsiao A, Zhang X, Primrose JN, Packham GK, Liu K, Bojja K, Gafà R, Xiao L, Rossi S, Song JH, Vannini I, Fanini F, Kopetz S, Zweidler-McKay P, Wang X, Ionescu C, Irimie A, Fabbri M, Lanza G, Hamilton SR, Berindan-Neagoe I, Medico E, Mirnezami AH, Calin GA, Nicoloso MS (2016) The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis. Gut 65:977–989CrossRefGoogle Scholar
  25. 25.
    Liu F, Liu Y, Shen J, Zhang G, Han J (2016) MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating fizzled 5 expression. Oncotarget 7:49130–49142Google Scholar
  26. 26.
    Loftus JC, Yang Z, Kloss J et al (2013) A novel interaction between Pyk2 and MAP4K4 is integrated with glioma cell migration. J Signal Transduct 2013:956580CrossRefGoogle Scholar
  27. 27.
    Michael MZ, Sm OC, Van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891Google Scholar
  28. 28.
    Neuzillet C, De Gramont A, Tijeras-Raballand A et al (2014) Perspectives of TGF-beta inhibition in pancreatic and hepatocellular carcinomas. Oncotarget 5:78–94CrossRefGoogle Scholar
  29. 29.
    Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, de Gramont A (2015) Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther 147:22–31CrossRefGoogle Scholar
  30. 30.
    Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11:1753–1761CrossRefGoogle Scholar
  31. 31.
    Qin J, Wang F, Jiang H, Xu J, Jiang Y, Wang Z (2015) MicroRNA-145 suppresses cell migration and invasion by targeting paxillin in human colorectal cancer cells. Int J Clin Exp Pathol 8:1328–1340Google Scholar
  32. 32.
    Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222CrossRefGoogle Scholar
  33. 33.
    Sakurai T, Kudo M (2011) Signaling pathways governing tumor angiogenesis. Oncology 81(Suppl 1):24–29CrossRefGoogle Scholar
  34. 34.
    Salem SM, Hamed AR, Mosaad RM (2017) MTDH and MAP3K1 are direct targets of apoptosis-regulating miRNAs in colorectal carcinoma. Biomed Pharmacother 94:767–773CrossRefGoogle Scholar
  35. 35.
    Shao Y, Chen H, Jiang X, Chen S, Li P, Ye M, Li Q, Sun W, Guo J (2014) Low expression of lncRNA-HMlincRNA717 in human gastric cancer and its clinical significances. Tumour Biol 35:9591–9595CrossRefGoogle Scholar
  36. 36.
    Speranza MC, Frattini V, Pisati F, Kapetis D, Porrati P, Eoli M, Pellegatta S, Finocchiaro G (2012) NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma. Oncotarget 3:723–734CrossRefGoogle Scholar
  37. 37.
    Stiegelbauer V, Vychytilova-Faltejskova P, Karbiener M, Pehserl AM, Reicher A, Resel M, Heitzer E, Ivan C, Bullock M, Ling H, Deutsch A, Wulf-Goldenberg A, Adiprasito JB, Stoeger H, Haybaeck J, Svoboda M, Stotz M, Hoefler G, Slaby O, Calin GA, Gerger A, Pichler M (2017) miR-196b-5p regulates colorectal cancer cell migration and metastases through interaction with HOXB7 and GALNT5. Clin Cancer Res 23:5255–5266CrossRefGoogle Scholar
  38. 38.
    Tu K, Yu H, Hua YJ, Li YY, Liu L, Xie L, Li YX (2009) Combinatorial network of primary and secondary microRNA-driven regulatory mechanisms. Nucleic Acids Res 37:5969–5980CrossRefGoogle Scholar
  39. 39.
    Vizio B, Biasi F, Scirelli T, Novarino A, Prati A, Ciuffreda L, Montrucchio G, Poli G, Bellone G (2013) Pancreatic-carcinoma-cell-derived pro-angiogenic factors can induce endothelial-cell differentiation of a subset of circulating CD34+ progenitors. J Transl Med 11:314CrossRefGoogle Scholar
  40. 40.
    Walsh LA, Damjanovski S (2011) IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-beta1 resulting in epithelial to mesenchymal transition. Cell Commun Signal 9:10CrossRefGoogle Scholar
  41. 41.
    Wang S, Liu H, Ren L, Pan Y, Zhang Y (2008) Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia 10:399–407CrossRefGoogle Scholar
  42. 42.
    Wang Y, Tang Q, Li M, Jiang S, Wang X (2014) MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun 444:199–204CrossRefGoogle Scholar
  43. 43.
    Wang B, Shen ZL, Gao ZD, Zhao G, Wang CY, Yang Y, Zhang JZ, Yan YC, Shen C, Jiang KW, Ye YJ, Wang S (2015) MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle 14:1046–1058CrossRefGoogle Scholar
  44. 44.
    Wang B, Lv K, Chen W et al (2016) miR-375 and miR-205 regulate the invasion and migration of laryngeal squamous cell carcinoma synergistically via AKT-mediated EMT. Biomed Res Int 2016:9652789Google Scholar
  45. 45.
    Xu L, Wen T, Liu Z, Xu F, Yang L, Liu J, Feng G, An G (2016) MicroRNA-375 suppresses human colorectal cancer metastasis by targeting frizzled 8. Oncotarget 7:40644–40656Google Scholar
  46. 46.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176Google Scholar
  47. 47.
    Yuan W, Sui C, Liu Q, Tang W, An H, Ma J (2014) Up-regulation of microRNA-145 associates with lymph node metastasis in colorectal cancer. PLoS One 9:e102017CrossRefGoogle Scholar
  48. 48.
    Zaravinos A, Soufla G, Bizakis J, Spandidos DA (2008) Expression analysis of VEGFA, FGF2, TGFbeta1, EGF and IGF1 in human nasal polyposis. Oncol Rep 19:385–391Google Scholar
  49. 49.
    Zemel R, Bachmetov L, Ad-El D et al (2009) Expression of liver-specific markers in naive adipose-derived mesenchymal stem cells. Liver Int 29:1326–1337CrossRefGoogle Scholar
  50. 50.
    Zhang GJ, Zhou H, Xiao HX, Li Y, Zhou T (2013) Up-regulation of miR-224 promotes cancer cell proliferation and invasion and predicts relapse of colorectal cancer. Cancer Cell Int 13:104CrossRefGoogle Scholar
  51. 51.
    Zhang H, Pu J, Qi T, Qi M, Yang C, Li S, Huang K, Zheng L, Tong Q (2014) MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene 33:387–397CrossRefGoogle Scholar
  52. 52.
    Zhang GJ, Li JS, Zhou H, Xiao HX, Li Y, Zhou T (2015) MicroRNA-106b promotes colorectal cancer cell migration and invasion by directly targeting DLC1. J Exp Clin Cancer Res 34:73CrossRefGoogle Scholar
  53. 53.
    Zheng YB, Xiao K, Xiao GC, Tong SL, Ding Y, Wang QS, Li SB, Hao ZN (2016) MicroRNA-103 promotes tumor growth and metastasis in colorectal cancer by directly targeting LATS2. Oncol Lett 12:2194–2200CrossRefGoogle Scholar
  54. 54.
    Zou D-B, Wei X, Hu R-L, Yang XP, Zuo L, Zhang SM, Zhu HQ, Zhou Q, Gui SY, Wang Y (2015) Melatonin inhibits the migration of colon cancer RKO cells by down-regulating myosin light chain kinase expression through cross-talk with p38 MAPK. Asian Pac J Cancer Prev 16:5835–5842CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  1. 1.Molecular Genetics and Enzymology DepartmentNational Research CentreGizaEgypt
  2. 2.Phytochemistry DepartmentNational Research CentreGizaEgypt
  3. 3.Biology Unit - Central Laboratory of Pharmaceutical and Drug Industries Research DivisionNational Research CentreGizaEgypt
  4. 4.Stem Cell Research UnitNational Research CentreGizaEgypt

Personalised recommendations