Advertisement

Nuclear Localization of Robo is Associated with Better Survival in Bladder Cancer

  • Ulrich Krafft
  • Henning Reis
  • Marc Ingenwerth
  • Ilona Kovalszky
  • Markus Becker
  • Christian Niedworok
  • Christopher Darr
  • Péter Nyirády
  • Boris Hadaschik
  • Tibor SzarvasEmail author
Original Article
  • 122 Downloads

Abstract

The Slit-Robo pathway has shown to be altered in several malignant diseases. However, its role in bladder cancer is poorly understood. Therefore, we aimed to assess the tissue expression of Robo1 and Robo4 as well as their ligand Slit2 in different stages of bladder cancer to explore possible changes of Slit-Robo signalling during the progression of bladder cancer. Robo1, Robo4 and Slit2 gene expressions were analyzed in 92 frozen bladder cancer tissue samples by using reverse transcription quantitative real-time PCR. Immunohistochemical analyses were performed on 149 formalin-fixed and paraffin-embedded bladder cancer tissue samples. Results were correlated with the clinical and follow-up data by performing both univariable and multivariable analyses. Robo1 and Robo4 nuclear staining intensitiy was significantly higher in low stage and low grade bladder cancer. Elevated Robo1 nuclear staining was associated with better disease-specific survival (DSS) (p = 0.045). Similarly, stronger Robo4 nuclear staining tended to be associated with longer DSS (p = 0.061). We found higher Robo1 and Slit2 gene expression levels in advanced stages of bladder cancer (p = 0.007 and p < 0.001). High Slit2 gene expression was correlated with significantly shorter DSS (p < 0.005), while Robo1 and Robo4 gene expressions were not associated with patients’ prognosis. Our results demonstrate that the nuclear expression of Robo1 and Robo4 is associated with a favourable prognosis suggesting that its translocation into the nucleus represent a posttranslational regulation process which may exhibit an antitumor effect in bladder cancer.

Keywords

Bladder Cancer Robo1 Robo4 Nuclear translocation Slit2 Prognosis Angiogenesis 

Notes

Funding

This work was supported by the National Research, Development and Innovation Office – NKFIH / PD 115616. Tibor Szarvas was supported by János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12253_2018_447_Fig4_ESM.png (541 kb)
ESM 1

(PNG 541 kb)

12253_2018_447_MOESM1_ESM.eps (18.6 mb)
High resolution image (EPS 19082 kb)

References

  1. 1.
    Stein JP, Skinner DG (2006) Radical cystectomy for invasive bladder cancer: long-term results of a standard procedure. World J Urol 24(3):296–304.  https://doi.org/10.1007/s00345-006-0061-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, Castro MAA, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa Carvalho B, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, Weinstein JN, Kwiatkowski DJ, Lerner SP (2017) Comprehensive molecular characterization of muscle-invasive bladder Cancer. Cell 171(3):540–556.e525.  https://doi.org/10.1016/j.cell.2017.09.007 CrossRefPubMedGoogle Scholar
  3. 3.
    Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG (2003) Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4(1):19–29CrossRefPubMedGoogle Scholar
  4. 4.
    Dickinson RE, Dallol A, Bieche I, Krex D, Morton D, Maher ER, Latif F (2004) Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers. Br J Cancer 91(12):2071–2078.  https://doi.org/10.1038/sj.bjc.6602222 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dickinson RE, Duncan WC (2010) The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction (Cambridge, England) 139(4):697–704.  https://doi.org/10.1530/rep-10-0017 CrossRefGoogle Scholar
  6. 6.
    Kaur S, Castellone MD, Bedell VM, Konar M, Gutkind JS, Ramchandran R (2006) Robo4 signaling in endothelial cells implies attraction guidance mechanisms. J Biol Chem 281(16):11347–11356.  https://doi.org/10.1074/jbc.M508853200 CrossRefPubMedGoogle Scholar
  7. 7.
    Sundaresan V, Heppell-Parton A, Coleman N, Miozzo M, Sozzi G, Ball R, Cary N, Hasleton P, Fowler W, Rabbitts P (1995) Somatic genetic changes in lung cancer and precancerous lesions. Ann Oncol 6(Suppl 1):27–31 discussion 31-22Google Scholar
  8. 8.
    Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J, Chang DK, Cowley MJ, Gardiner BB, Song S, Harliwong I, Idrisoglu S, Nourse C, Nourbakhsh E, Manning S, Wani S, Gongora M, Pajic M, Scarlett CJ, Gill AJ, Pinho AV, Rooman I, Anderson M, Holmes O, Leonard C, Taylor D, Wood S, Xu Q, Nones K, Fink JL, Christ A, Bruxner T, Cloonan N, Kolle G, Newell F, Pinese M, Mead RS, Humphris JL, Kaplan W, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chou A, Chin VT, Chantrill LA, Mawson A, Samra JS, Kench JG, Lovell JA, Daly RJ, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N, Kakkar N, Zhao F, Wu YQ, Wang M, Muzny DM, Fisher WE, Brunicardi FC, Hodges SE, Reid JG, Drummond J, Chang K, Han Y, Lewis LR, Dinh H, Buhay CJ, Beck T, Timms L, Sam M, Begley K, Brown A, Pai D, Panchal A, Buchner N, De Borja R, Denroche RE, Yung CK, Serra S, Onetto N, Mukhopadhyay D, Tsao MS, Shaw PA, Petersen GM, Gallinger S, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Schulick RD, Wolfgang CL, Morgan RA, Lawlor RT, Capelli P, Corbo V, Scardoni M, Tortora G, Tempero MA, Mann KM, Jenkins NA, Perez-Mancera PA, Adams DJ, Largaespada DA, Wessels LF, Rust AG, Stein LD, Tuveson DA, Copeland NG, Musgrove EA, Scarpa A, Eshleman JR, Hudson TJ, Sutherland RL, Wheeler DA, Pearson JV, McPherson JD, Gibbs RA, Grimmond SM (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491(7424):399–405.  https://doi.org/10.1038/nature11547 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gara RK, Kumari S, Ganju A, Yallapu MM, Jaggi M, Chauhan SC (2015) Slit/Robo pathway: a promising therapeutic target for cancer. Drug Discov Today 20(1):156–164.  https://doi.org/10.1016/j.drudis.2014.09.008 CrossRefPubMedGoogle Scholar
  10. 10.
    Prasad A, Fernandis AZ, Rao Y, Ganju RK (2004) Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 279(10):9115–9124.  https://doi.org/10.1074/jbc.M308083200 CrossRefPubMedGoogle Scholar
  11. 11.
    Prasad A, Paruchuri V, Preet A, Latif F, Ganju RK (2008) Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem 283(39):26624–26633.  https://doi.org/10.1074/jbc.M800679200 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods (San Diego, Calif) 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  13. 13.
    Huang T, Kang W, Cheng AS, Yu J, To KF (2015) The emerging role of Slit-Robo pathway in gastric and other gastro intestinal cancers. BMC Cancer 15:950.  https://doi.org/10.1186/s12885-015-1984-4 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Legg JA, Herbert JM, Clissold P, Bicknell R (2008) Slits and roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis 11(1):13–21.  https://doi.org/10.1007/s10456-008-9100-x CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ, Geng JG (2011) Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 21(4):609–626.  https://doi.org/10.1038/cr.2011.17 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Stella MC, Trusolino L, Comoglio PM (2009) The Slit/Robo system suppresses hepatocyte growth factor-dependent invasion and morphogenesis. Mol Biol Cell 20(2):642–657.  https://doi.org/10.1091/mbc.E08-03-0321 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Marlow R, Strickland P, Lee JS, Wu X, Pebenito M, Binnewies M, Le EK, Moran A, Macias H, Cardiff RD, Sukumar S, Hinck L (2008) SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res 68(19):7819–7827.  https://doi.org/10.1158/0008-5472.can-08-1357 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schmid BC, Rezniczek GA, Fabjani G, Yoneda T, Leodolter S, Zeillinger R (2007) The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res Treat 106(3):333–342.  https://doi.org/10.1007/s10549-007-9504-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Li Y, Cheng H, Xu W, Tian X, Li X, Zhu C (2015) Expression of Robo protein in bladder cancer tissues and its effect on the growth of cancer cells by blocking Robo protein. Int J Clin Exp Pathol 8(9):9932–9940PubMedPubMedCentralGoogle Scholar
  20. 20.
    Fujiwara M, Ghazizadeh M, Kawanami O (2006) Potential role of the Slit/Robo signal pathway in angiogenesis. Vasc Med (London, England) 11(2):115–121Google Scholar
  21. 21.
    Seki M, Watanabe A, Enomoto S, Kawamura T, Ito H, Kodama T, Hamakubo T, Aburatani H (2010) Human ROBO1 is cleaved by metalloproteinases and gamma-secretase and migrates to the nucleus in cancer cells. FEBS Lett 584(13):2909–2915.  https://doi.org/10.1016/j.febslet.2010.05.009 CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  • Ulrich Krafft
    • 1
  • Henning Reis
    • 2
  • Marc Ingenwerth
    • 2
  • Ilona Kovalszky
    • 3
  • Markus Becker
    • 1
  • Christian Niedworok
    • 1
  • Christopher Darr
    • 1
  • Péter Nyirády
    • 4
  • Boris Hadaschik
    • 1
  • Tibor Szarvas
    • 1
    • 4
    Email author
  1. 1.Department of Urology, Faculty of MedicineUniversity Duisburg-EssenEssenGermany
  2. 2.Institute of Pathology, Faculty of MedicineUniversity Duisburg-EssenEssenGermany
  3. 3.1st Institute of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
  4. 4.Department of UrologySemmelweis UniversityBudapestHungary

Personalised recommendations