The Role of Caspase Genes Polymorphisms in Genetic Susceptibility to Philadelphia-Negative Myeloproliferative Neoplasms in a Portuguese Population

  • Ana P. Azevedo
  • Susana N. Silva
  • Alice Reichert
  • Fernando Lima
  • Esmeraldina Júnior
  • José Rueff
Original Article


Our main aim was to evaluate the role of caspases’ genes SNPs in Philadelphia-chromosome negative chronic myeloproliferative neoplasms (PN-MPNs) susceptibility. A case-control study in 133 Caucasian Portuguese PN-MPNs patients and 281 matched controls was carried out, studying SNPs in apoptosis related caspases: rs1045485 and rs1035142 (CASP8), rs1052576, rs2308950, rs1132312 and rs1052571 (CASP9), rs2227309 and rs2227310 (CASP7) and rs13006529 (CASP10). After stratification by pathology diagnosis for essential thrombocythemia (ET), female gender or JAK2 positive, there is a significant increased risk for those carrying at least one variant allele for CASP9 (C653T) polymorphism (OR 2.300 CI 95% [1.180–4.484], P = 0.014). However, when considered individually, none of the studied caspases polymorphisms was associated with PN-MPNs risk. Our results do not reveal a significant involvement of caspase genes polymorphisms on the individual susceptibility towards PN-MPNs as a whole. However, for essential thrombocythemia (ET), female gender or JAK2 positive, there is a significant increased risk to those carrying at least one variant allele for CASP9. Although larger studies are required to confirm these results and to provide conclusive evidence of association between these and other caspases variants and PN-MPNs susceptibility, these new data may contribute to a best knowledge of the pathophysiology of these disorders and, in the future, to a more rational and efficient choice of therapeutic strategies to be adopted in PN-MPNs treatment.


Philadelphia-negative myeloproliferative neoplasms Genetic susceptibility Caspase genes polymorphisms Janus kinase 2 



We gratefully acknowledge all patients and controls who generously participated in this study. Our appreciation and thankfulness are extended to Luísa Manso Oliveira and Inês Sousa for expert technical assistance.

This work was supported by funding through project UID/BIM/00009/2013 (Center for Toxicogenomics and Human Health (ToxOmics), from Fundação para a Ciência e Tecnologia (FCT), Portugal.

A BPD grant from FCT to Silva SN (SFRH/BPD/80462/2011) is also acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors claim no competing financial or intellectual conflicts of interest in the preparation and submission of this manuscript.


  1. 1.
    Swerdlow CESH, Harris NL et al (2008) WHO classification of Tumours of Haematopoieticand lymphoid tissues., 4 edition (October 27, 2008) ed. World Health Organization, LyonGoogle Scholar
  2. 2.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405CrossRefPubMedGoogle Scholar
  3. 3.
    James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148CrossRefPubMedGoogle Scholar
  4. 4.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790CrossRefPubMedGoogle Scholar
  5. 5.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D'Andrea A, Fröhling S, Döhner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397CrossRefPubMedGoogle Scholar
  6. 6.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR, Project CG (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061CrossRefPubMedGoogle Scholar
  7. 7.
    Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, Warren AJ, Gilliland DG, Lodish HF, Green AR (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356:459–468CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tognon R, Nunes NeS, Castro FA (2013) Apoptosis deregulation in myeloproliferative neoplasms. Einstein (Sao Paulo) 11:540–544CrossRefGoogle Scholar
  9. 9.
    Tefferi A, Pardanani A (2015) Myeloproliferative neoplasms: a contemporary review. JAMA Oncol 1:97–105CrossRefPubMedGoogle Scholar
  10. 10.
    Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, Aziz A, Godfrey AL, Hinton J, Martincorena I, Van Loo P, Jones AV, Guglielmelli P, Tarpey P, Harding HP, Fitzpatrick JD, Goudie CT, Ortmann CA, Loughran SJ, Raine K, Jones DR, Butler AP, Teague JW, O'Meara S, McLaren S, Bianchi M, Silber Y, Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill K, Orchard K, Tauro S, Du MQ, Greaves M, Bowen D, Huntly BJ, Harrison CN, Cross NC, Ron D, Vannucchi AM, Papaemmanuil E, Campbell PJ, Green AR (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369:2391–2405CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rueff J, Rodrigues AS (2016) Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol 1395:1–18CrossRefPubMedGoogle Scholar
  12. 12.
    Rice KL, Lin X, Wolniak K, Ebert BL, Berkofsky-Fessler W, Buzzai M, Sun Y, Xi C, Elkin P, Levine R, Golub T, Gilliland DG, Crispino JD, Licht JD, Zhang W (2011) Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms. Blood Cancer J 1:e40CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Valentino L, Pierre J (2006) JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 71:713–721CrossRefPubMedGoogle Scholar
  14. 14.
    Bolufer P, Barragan E, Collado M, Cervera J, López JA, Sanz MA (2006) Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 30:1471–1491CrossRefPubMedGoogle Scholar
  15. 15.
    Delhommeau F, Jeziorowska D, Marzac C, Casadevall N (2010) Molecular aspects of myeloproliferative neoplasms. Int J Hematol 91:165–173CrossRefPubMedGoogle Scholar
  16. 16.
    Beer PA, Delhommeau F, LeCouédic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM, Vainchenker W, Green AR (2010) Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 115:2891–2900CrossRefPubMedGoogle Scholar
  17. 17.
    Kilpivaara O, Levine RL (2008) JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science. Leukemia 22:1813–1817CrossRefPubMedGoogle Scholar
  18. 18.
    Björkholm M, Hultcrantz M, Derolf Å (2014) Leukemic transformation in myeloproliferative neoplasms: therapy-related or unrelated? Best Pract Res Clin Haematol 27:141–153CrossRefPubMedGoogle Scholar
  19. 19.
    Levine RL (2009) Mechanisms of mutations in myeloproliferative neoplasms. Best Pract Res Clin Haematol 22:489–494CrossRefPubMedGoogle Scholar
  20. 20.
    Campregher PV, Santos FP, Perini GF, Hamerschlak N (2012) Molecular biology of Philadelphia-negative myeloproliferative neoplasms. Rev Bras Hematol Hemoter 34:150–155CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Goldar S, Khaniani MS, Derakhshan SM, Baradaran B (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 16:2129–2144CrossRefPubMedGoogle Scholar
  22. 22.
    Kiraz Y, Adan A, Kartal Yandim M, Baran Y (2016) Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 37:8471–8486CrossRefPubMedGoogle Scholar
  23. 23.
    Zaman S, Wang R, Gandhi V (2014) Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma 55:1980–1992CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7Google Scholar
  25. 25.
    Nunes NS, Tognon R, Moura LG, Kashima S, Covas DT, Santana M, Souto EX, Zanichelli MA, Simões BP, Souza AM, Castro FA (2013) Differential expression of apoptomiRs in myeloproliferative neoplasms. Leuk Lymphoma 54:2047–2051CrossRefPubMedGoogle Scholar
  26. 26.
    Tognon R, Gasparotto EP, Leroy JM, Oliveira GL, Neves RP, Carrara ReC, Kashima S, Covas DT, Santana M, Souto EX, Zanichelli MA, Velano CE, Simões BP, Alberto FL, Miyashiro K, de Souza AM, Amarante-Mendes GP, de Castro FA (2011) Differential expression of apoptosis-related genes from death receptor pathway in chronic myeloproliferative diseases. J Clin Pathol 64:75–82CrossRefPubMedGoogle Scholar
  27. 27.
    Tognon R, Gasparotto EP, Neves RP, Nunes NS, Ferreira AF, Palma PV, Kashima S, Covas DT, Santana M, Souto EX, Zanichelli MA, Simões BP, de Souza AM, Castro FA (2012) Deregulation of apoptosis-related genes is associated with PRV1 overexpression and JAK2 V617F allele burden in essential thrombocythemia and myelofibrosis. J Hematol Oncol 5:2CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tognon R, Nunes NS, Ambrosio L, Souto EX, Perobelli L, Simões BP, Souza MC, Chauffaille MeL, Attié de Castro F (2016) Apoptosis- and cell cycle-related genes methylation profile in myeloproliferative neoplasms. Leuk Lymphoma 57:1201–1204CrossRefPubMedGoogle Scholar
  29. 29.
    Olsson M, Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ 18:1441–1449CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mambet C, Matei L, Necula LG, Diaconu CC (2016) A link between the driver mutations and dysregulated apoptosis in BCR-ABL1 negative myeloproliferative neoplasms. J Immunoassay Immunochem 37:331–345CrossRefPubMedGoogle Scholar
  31. 31.
    Tefferi A, Vardiman JW (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22:14–22CrossRefPubMedGoogle Scholar
  32. 32.
    Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413CrossRefPubMedGoogle Scholar
  33. 33.
    Cho SG, Choi EJ (2002) Apoptotic signaling pathways: caspases and stress-activated protein kinases. J Biochem Mol Biol 35:24–27PubMedGoogle Scholar
  34. 34.
    Philchenkov A, Zavelevich M, Kroczak TJ, Los M (2004) Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol 26:82–97PubMedGoogle Scholar
  35. 35.
    Ng PW, Porter AG, Jänicke RU (1999) Molecular cloning and characterization of two novel pro-apoptotic isoforms of caspase-10. J Biol Chem 274:10301–10308CrossRefPubMedGoogle Scholar
  36. 36.
    Oliver L, Vallette FM (2005) The role of caspases in cell death and differentiation. Drug Resist Updat 8:163–170CrossRefPubMedGoogle Scholar
  37. 37.
    Petit E, Oliver L, Vallette FM (2009) The mitochondrial outer membrane protein import machinery: a new player in apoptosis? Front Biosci (Landmark Ed) 14:3563–3570CrossRefGoogle Scholar
  38. 38.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629CrossRefPubMedGoogle Scholar
  39. 39.
    Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933PubMedGoogle Scholar
  40. 40.
    Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35CrossRefPubMedGoogle Scholar
  41. 41.
    Creagh EM, Conroy H, Martin SJ (2003) Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193:10–21CrossRefPubMedGoogle Scholar
  42. 42.
    Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J, Yuan J, Fisher DE (2000) Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 275:38905–38911CrossRefPubMedGoogle Scholar
  43. 43.
    Testa U (2004) Apoptotic mechanisms in the control of erythropoiesis. Leukemia 18:1176–1199CrossRefPubMedGoogle Scholar
  44. 44.
    Malherbe JA, Fuller KA, Mirzai B, Kavanagh S, So CC, Ip HW, Guo BB, Forsyth C, Howman R, Erber WN (2016) Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms. J Clin Pathol 69(11):1017-1024Google Scholar
  45. 45.
    Lan Q, Morton LM, Armstrong B, Hartge P, Menashe I, Zheng T, Purdue MP, Cerhan JR, Zhang Y, Grulich A, Cozen W, Yeager M, Holford TR, Vajdic CM, Davis S, Leaderer B, Kricker A, Schenk M, Zahm SH, Chatterjee N, Chanock SJ, Rothman N, Wang SS (2009) Genetic variation in caspase genes and risk of non-Hodgkin lymphoma: a pooled analysis of 3 population-based case-control studies. Blood 114:264–267CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kelly JL, Novak AJ, Fredericksen ZS, Liebow M, Ansell SM, Dogan A, Wang AH, Witzig TE, Call TG, Kay NE, Habermann TM, Slager SL, Cerhan JR (2010) Germline variation in apoptosis pathway genes and risk of non-Hodgkin's lymphoma. Cancer Epidemiol Biomark Prev 19:2847–2858CrossRefGoogle Scholar
  47. 47.
    Park JY, Park JM, Jang JS, Choi JE, Kim KM, Cha SI, Kim CH, Kang YM, Lee WK, Kam S, Park RW, Kim IS, Lee JT, Jung TH (2006) Caspase 9 promoter polymorphisms and risk of primary lung cancer. Hum Mol Genet 15:1963–1971CrossRefPubMedGoogle Scholar
  48. 48.
    Lin J, Lu C, Stewart DJ, Gu J, Huang M, Chang DW, Lippman SM, Wu X (2012) Systematic evaluation of apoptotic pathway gene polymorphisms and lung cancer risk. Carcinogenesis 33:1699–1706CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Theodoropoulos GE, Michalopoulos NV, Pantou MP, Kontogianni P, Gazouli M, Karantanos T, Lymperi M, Zografos GC (2012) Caspase 9 promoter polymorphisms confer increased susceptibility to breast cancer. Cancer Genet 205:508–512CrossRefPubMedGoogle Scholar
  50. 50.
    Liamarkopoulos E, Gazouli M, Aravantinos G, Tzanakis N, Theodoropoulos G, Rizos S, Nikiteas N (2011) Caspase 8 and caspase 9 gene polymorphisms and susceptibility to gastric cancer. Gastric Cancer 14:317–321CrossRefPubMedGoogle Scholar
  51. 51.
    Florena AM, Tripodo C, Di Bernardo A, Iannitto E, Guarnotta C, Porcasi R, Ingrao S, Abbadessa V, Franco V (2009) Different immunophenotypical apoptotic profiles characterise megakaryocytes of essential thrombocythaemia and primary myelofibrosis. J Clin Pathol 62:331–338CrossRefPubMedGoogle Scholar
  52. 52.
    Lindholm Sørensen A, Hasselbalch HC (2015) Smoking and Philadelphia-negative chronic myeloproliferative neoplasms. Eur J Haematol 97(1):63-69Google Scholar
  53. 53.
    Hasselbalch HC (2015) Smoking as a contributing factor for development of polycythemia vera and related neoplasms. Leuk Res 39:1137–1145CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  1. 1.Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School|Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal
  2. 2.Department of Clinical PathologyHospital de S. Francisco Xavier, Centro Hospitalar de Lisboa Ocidental (CHLO)LisbonPortugal
  3. 3.Department of Clinical HaematologyHospital de S. Francisco Xavier, Centro Hospitalar de Lisboa Ocidental (CHLO)LisbonPortugal

Personalised recommendations