Pathology & Oncology Research

, Volume 24, Issue 4, pp 745–755 | Cite as

Anti-Diabetic Drugs: Cure or Risk Factors for Cancer?

  • Jeny Laskar
  • Kasturi Bhattacharjee
  • Mahuya Sengupta
  • Yashmin ChoudhuryEmail author


Anti-diabetic drugs are an important group of therapeutics used worldwide. Different anti-diabetic drugs lower blood glucose level by different mechanisms. In recent years, numerous investigations have been performed based on both comparative and cohort studies, in order to establish the relationship between anti-diabetic pharmacotherapy and cancer incidence as well as mortality due to cancer. Some anti-diabetic drugs have been found to exhibit anti-cancer activity while others might increase the risk for cancer. The underlying cause for this disparity is likely to be the varying mechanisms of action of these drugs in controlling blood glucose level. This review discusses the various carcinogenic and/or anti-cancer effects of commonly used anti-diabetic drugs. The information is vital in view of the fact that diabetes mellitus is a commonly occurring disease with a rising incidence rate.


Anti- cancer effect Anti-diabetic drugs Cancer risk 



This study was funded by grant with sanction no. BT/567/NE/U-Excel/2016 dated 31st March, 2017, from DBT, Government of India to Yashmin Choudhury. Jeny Laskar was provided Maulana Azad National Fellowship (MANF) by the University Grants Commission, Government of India. The authors acknowledge the Department of Biotechnology, Assam University, Silchar for providing necessary facilities.

Compliance with Ethical Standards

Conflict of Interest



  1. 1.
    Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R (2009) Diabetes mellitus and cancer. Endocr Relat Cancer 16:1103–1123. PubMedCrossRefGoogle Scholar
  2. 2.
    Forouhi NG, Wareham NJ (2014) Epidemiology of diabetes. Medicine (Abingdon) 42(12):698–702.
  3. 3.
    García-Jiménez C, Gutiérrez-Salmerón M, Chocarro-Calvo A, García-Martinez JM, Castaño A, de la Vieja A (2016) From obesity to diabetes and cancer: epidemiological links and role of therapies. Br J Cancer 114:716–722.
  4. 4.
    Fitzmaurice C, Allen C, Barber RM et al (2017) Global, regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 Cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3:524–548. PubMedCrossRefGoogle Scholar
  5. 5.
    Richardson LC, Pollack LA (2005) Therapy insight: influence of type 2 diabetes on the development, treatment and outcomes of cancer. Nat Clin Pract Oncol 2:48–53.
  6. 6.
    Song S, Wang B, Zhang X, Hao L, Hu X, Li Z, Sun S (2015) Long-term diabetes mellitus is associated with an increased risk of pancreatic Cancer: a meta-analysis. PLoS One 10:e0134321. PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Xu B, Zhou X, Li X, Liu C, Yang C (2017) Diabetes mellitus carries a risk of esophageal cancer: a meta-analysis. Medicine (Baltimore) 96:e7944.
  8. 8.
    Dehal AN, Newton CC, Jacobs EJ, Patel AV, Gapstur SM, Campbell PT (2012) Impact of diabetes mellitus and insulin use on survival after colorectal Cancer diagnosis: the Cancer prevention study-II nutrition cohort. J Clin Oncol 30:53–59.
  9. 9.
    Nguyen QT, Sanders L, Michael AP, Anderson SR, Nguyen LD, Johnson ZA (2012) Diabetes medications and cancer risk: review of the literature. Am Health Drug Benefits 5:221–229Google Scholar
  10. 10.
    Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116. PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kolb H, Martin S (2017) Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med 15:131. PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hua F, Yu J-J, Hu Z-W (2016) Diabetes mellitus and cancer, common threads and missing links. Cancer Lett 374:54–61. PubMedCrossRefGoogle Scholar
  13. 13.
    Roberts CK, Hevener AL, Barnard RJ (2013) Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 3(1):1–58.
  14. 14.
    Uzunlulu M, Telci Caklili O, Oguz A (2016) Association between metabolic syndrome and Cancer. Ann Nutr Metab 68:173–179. PubMedCrossRefGoogle Scholar
  15. 15.
    Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, Foti D, Chiefari E, Brunetti A (2012) Insulin resistance and Cancer risk: an overview of the Pathogenetic mechanisms. Exp Diabetes Res 2012:1–12. CrossRefGoogle Scholar
  16. 16.
    Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D (2010) Diabetes and Cancer: a consensus report. CA Cancer J Clin 60:207–221.
  17. 17.
    Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, Smith RJ, Smith SR, Endocrine Society., American Diabetes Association., European Association for the Study of Diabetes (2011) Obesity and type 2 diabetes mellitus: what can be unified and what needs to be individualized? Diabetes Care 34:1424–1430. PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    De Pergola G, Silvestris F (2013) Obesity as a major risk factor for Cancer. J Obes 2013:1–11. CrossRefGoogle Scholar
  19. 19.
    Vona-Davis L, Rose DP (2007) Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer 14:189–206. PubMedCrossRefGoogle Scholar
  20. 20.
    Vasconcelos-dos-Santos A, Loponte HFBR, Mantuano NR, Oliveira IA, de Paula IF, Teixeira LK, de-Freitas-Junior JCM, Gondim KC, Heise N, Mohana-Borges R, Morgado-Díaz JA, Dias WB, Todeschini AR (2017) Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 6:e306.
  21. 21.
    González N, Prieto I, del P-NL et al (2017) 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget 8:18456–18485. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ye A (2009) Historical review of anti-diabetic drugs’ discovery. Zhonghua Yi Shi Za Zhi Beijing China 1980 39:229–231Google Scholar
  23. 23.
    Patade G, Marita AR (2014) Metformin: a journey from countryside to the bedside. J Obes Metab Res 1:127. CrossRefGoogle Scholar
  24. 24.
    Bailey C, Day C (2004) Metformin: its botanical background. Pract Diabetes Int 21:115–117. CrossRefGoogle Scholar
  25. 25.
    Rojas LBA, Gomes MB (2013) Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 5:6. PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Barnett D, Craig JG, Robinson DS, Rogers MP (1977) Effect of clofibrate on glucose tolerance in maturity onset diabetes. Br J Clin Pharmacol 4:455–458PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Quianzon CCL, Cheikh IE (2012) History of current non-insulin medications for diabetes mellitus. J Community Hosp Intern Med Perspect 2:19081. CrossRefGoogle Scholar
  28. 28.
    Hiatt WR, Kaul S, Smith RJ (2013) The cardiovascular safety of diabetes drugs — insights from the rosiglitazone experience. N Engl J Med 369:1285–1287. PubMedCrossRefGoogle Scholar
  29. 29.
    Mehanna A (2013) Anti-diabetic agents: past, present and future. Future Med Chem 5:411–430. PubMedCrossRefGoogle Scholar
  30. 30.
    Jambon S, Chaptal J, Vedel A, Schaap J (1942) Accidents hypoglycemiques graves par un sulfamido-thiadiazol. Montp Med 21:441–445Google Scholar
  31. 31.
    Mulder H, Schopman W, van der Lely AJ (1991) Extrapancreatic insulin effect of glibenclamide. Eur J Clin Pharmacol 40:379–381. PubMedCrossRefGoogle Scholar
  32. 32.
    Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, Corlianò F, Fra GP, Bartoli E, Derosa G (2015) State of the art paper sulfonylureas and their use in clinical practice. Arch Med Sci 4:840–848. CrossRefGoogle Scholar
  33. 33.
    Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28:325–353PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Eng J, Kleinman WA, Singh L, Singh G, Raufman JP (1992) Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 267:7402–7405PubMedGoogle Scholar
  35. 35.
    Neumiller JJ (2009) Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. J Am Pharm Assoc 49:S16–S29. CrossRefGoogle Scholar
  36. 36.
    Gibbs JP, Fredrickson J, Barbee T, Correa I, Smith B, Lin SL, Gibbs MA (2012) Quantitative model of the relationship between Dipeptidyl Peptidase-4 (DPP-4) inhibition and response: meta-analysis of Alogliptin, Saxagliptin, Sitagliptin, and Vildagliptin efficacy results. J Clin Pharmacol 52:1494–1505. PubMedCrossRefGoogle Scholar
  37. 37.
    Gomis R, Espadero R-M, Jones R, Woerle HJ, Dugi KA (2011) Efficacy and safety of initial combination therapy with linagliptin and pioglitazone in patients with inadequately controlled type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab 13:653–661. PubMedCrossRefGoogle Scholar
  38. 38.
    Meienhofer J, Schnabel E, Bremer H, Brinkhoff O, Zabel R, Sroka W, Klostermeyer H, Brandenburg D, Okuda T, Zahn H (1963) Notizen: Synthese der Insulinketten und ihre Kombination zu insulinaktiven Präparaten. Z Für Naturforschung B 18.
  39. 39.
    Kung YT, Du YC, Huang WT et al (1965) Total synthesis of crystalline bovine insulin. Sci Sin 14(11):1710-6.Google Scholar
  40. 40.
    Katsoyannis PG, Tometsko A, Zalut C (1966) Insulin peptides. XII. Human insulin generation by combination of synthetic a and B chains 1. J Am Chem Soc 88:166–167. PubMedCrossRefGoogle Scholar
  41. 41.
    Mathieu C, Gale EAM (2007) Inhaled insulin: gone with the wind? Diabetologia 51:1–5. CrossRefGoogle Scholar
  42. 42.
    Sciacca L, Moli RL, Vigneri R (2012) Insulin analogs and Cancer. Front Endocrinol 3.
  43. 43.
    Pollak MN (2012) Investigating metformin for Cancer prevention and treatment: the end of the beginning. Cancer Discov 2:778–790. PubMedCrossRefGoogle Scholar
  44. 44.
    Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal JB, Bolen S (2016) Diabetes medications as Monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 164:740–751. PubMedCrossRefGoogle Scholar
  45. 45.
    Strowig SM, Avilés-Santa ML, Raskin P (2002) Comparison of insulin monotherapy and combination therapy with insulin and metformin or insulin and troglitazone in type 2 diabetes Diabetes Care 25:1691–1698Google Scholar
  46. 46.
    Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci 122:253–270. PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Evans JMM (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305. PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, la Vecchia C, Mancia G, Corrao G (2012) Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 17:813–822. PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tang Y-L, Zhu L-Y, Li Y, Yu J, Wang J, Zeng XX, Hu KX, Liu JY, Xu JX (2017) Metformin use is associated with reduced incidence and improved survival of endometrial Cancer: a meta-analysis. Biomed Res Int 2017:1–9. CrossRefGoogle Scholar
  50. 50.
    Fan C, Wang Y, Liu Z et al (2015) Metformin exerts anticancer effects through the inhibition of the sonic hedgehog signaling pathway in breast cancer. Int J Mol Med 36:204–214. PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gou S, Cui P, Li X, Shi P, Liu T, Wang C (2013) Low concentrations of metformin selectively inhibit CD133+ cell proliferation in pancreatic cancer and have anticancer action. PLoS One 8:e63969. PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tseng C-H (2014) Metformin reduces thyroid cancer risk in Taiwanese patients with type 2 diabetes. PLoS One 9:e109852. PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kato K, Gong J, Iwama H, Kitanaka A, Tani J, Miyoshi H, Nomura K, Mimura S, Kobayashi M, Aritomo Y, Kobara H, Mori H, Himoto T, Okano K, Suzuki Y, Murao K, Masaki T (2012) The anti-diabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther 11:549–560. PubMedCrossRefGoogle Scholar
  54. 54.
    Tseng C-H (2016) Metformin reduces gastric cancer risk in patients with type 2 diabetes mellitus. Aging 8:1636–1649. PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tseng C-H (1990) (2014) metformin significantly reduces incident prostate cancer risk in Taiwanese men with type 2 diabetes mellitus. Eur J Cancer Oxf Engl 50:2831–2837. CrossRefGoogle Scholar
  56. 56.
    Tseng C-H (2017) Metformin is associated with a lower risk of colorectal cancer in Taiwanese patients with type 2 diabetes: a retrospective cohort analysis. Diabetes Metab 43:438–445.
  57. 57.
    Tseng C-H (2014) Metformin may reduce bladder cancer risk in Taiwanese patients with type 2 diabetes. Acta Diabetol 51:295–303. PubMedCrossRefGoogle Scholar
  58. 58.
    Tseng C-H (2016) Metformin may reduce oral cancer risk in patients with type 2 diabetes. Oncotarget 7:2000–2008. PubMedCrossRefGoogle Scholar
  59. 59.
    Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer prevention and therapy. Ann Transl Med 2:57. PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tseng C-H (2017) Metformin and lung cancer risk in patients with type 2 diabetes mellitus mellitus. Oncotarget 8:41132–41142. PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tseng C-H (2017) Metformin and esophageal cancer risk in Taiwanese patients with type 2 diabetes mellitus. Oncotarget 8:18802–18810. PubMedCrossRefGoogle Scholar
  62. 62.
    Tseng C-H (2016) Metformin use and cervical cancer risk in female patients with type 2 diabetes mellitus. Oncotarget 7:59548–59555. PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Tseng C-H (2016) use of metformin and risk of kidney cancer in patients with type 2 diabetes. Eur J Cancer Oxf Engl 52:19–25. CrossRefGoogle Scholar
  64. 64.
    Tseng C-H (2015) Metformin reduces ovarian cancer risk in Taiwanese women with type 2 diabetes mellitus. mellitus Diabetes mellitus Metab Res Rev 31:619–626. CrossRefGoogle Scholar
  65. 65.
    Tseng C-H (2014) Metformin may reduce breast cancer risk in Taiwanese women with type 2 diabetes. Breast Cancer Res Treat 145:785–790. PubMedCrossRefGoogle Scholar
  66. 66.
    Neumann A, Weill A, Ricordeau P, Fagot JP, Alla F, Allemand H (2012) Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study. Diabetologia 55:1953–1962. PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ferrara A, Lewis JD, Quesenberry CP, Peng T, Strom BL, van den Eeden SK, Ehrlich SF, Habel LA (2011) Cohort study of pioglitazone and cancer incidence in patients with diabetes. Diabetes Care 34:923–929.
  68. 68.
    Tseng C-H (2017) Rosiglitazone reduces breast cancer risk in Taiwanese female patients with type 2 diabetes mellitus. Oncotarget 8:3042–3048. PubMedCrossRefGoogle Scholar
  69. 69.
    Tseng C-H (2015) Rosiglitazone may reduce non-melanoma skin cancer risk in Taiwanese. BMC Cancer 15:41. PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chang C-H, Lin J-W, Wu L-C, Lai MS, Chuang LM (2012) Oral insulin Secretagogues, insulin, and Cancer risk in type 2 diabetes mellitus. J Clin Endocrinol Metab 97:E1170–E1175.
  71. 71.
    Tuccori M, Wu JW, Yin H, Majdan A, Azoulay L (2015) The use of glyburide compared with other sulfonylureas and the risk of Cancer in patients with type 2 diabetes. Diabetes Care 38:2083–2089. PubMedCrossRefGoogle Scholar
  72. 72.
    Qi C, Zhou Q, Li B, Yang Y, Cao L, Ye Y, Li J, Ding Y, Wang H, Wang J, He X, Zhang Q, Lan T, Lee KKH, Li W, Song X, Zhou J, Yang X, Wang L (2014) Glipizide, an anti-diabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis. Oncotarget 5:9966–9979. PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC (2011) Pancreatitis, pancreatic, and thyroid Cancer with glucagon-like Peptide-1–based therapies. Gastroenterology 141:150–156. PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Tseng C-H (2016) Sitagliptin and pancreatic cancer risk in patients with type 2 diabetes. Eur J Clin Investig 46:70–79. CrossRefGoogle Scholar
  75. 75.
    Tseng C-H (2016) Sitagliptin use and thyroid cancer risk in patients with type 2 diabetes. Oncotarget 7:24871–24879. PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Raz I, Bhatt DL, Hirshberg B, Mosenzon O, Scirica BM, Umez-Eronini A, Im KA, Stahre C, Buskila A, Iqbal N, Greenberger N, Lerch MM (2014) Incidence of pancreatitis and pancreatic cancer in a randomized controlled multicenter trial (SAVOR-TIMI 53) of the dipeptidyl peptidase-4 inhibitor saxagliptin. Diabetes Care 37:2435–2441.
  77. 77.
    Tseng C-H (2015) Prolonged use of human insulin increases breast cancer risk in Taiwanese women with type 2 diabetes. BMC Cancer 15:846. PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Gu Y, Wang C, Zheng Y, Hou X, Mo Y, Yu W, Zhang L, Hu C, Nan H, Chen L, Li J, Liu Y, Huang Z, Han M, Bao Y, Zhong W, Jia W (2013) Cancer incidence and mortality in patients with type 2 diabetes treated with human insulin: a cohort study in shanghai. PLoS One 8:e53411. PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ferguson RD, Gallagher EJ, Scheinman EJ, Damouni R, LeRoith D (2013) The epidemiology and molecular mechanisms linking obesity, diabetes, and cancer. Vitam Horm (93):51–98Google Scholar
  80. 80.
    Cui W, Ji M-J, Chen H et al (2016) Insulin analogs detemir, glargine and lispro enhance proliferation of human thyroid and gastric normal or cancer cell lines. Int J Clin Exp Med 9:1603–1611Google Scholar
  81. 81.
    Aizen D, Sarfstein R, Bruchim I, Weinstein D, Laron Z, Werner H (2015) Proliferative and signaling activities of insulin analogues in endometrial cancer cells. Mol Cell Endocrinol 406:27–39. PubMedCrossRefGoogle Scholar
  82. 82.
    Hemkens LG, Grouven U, Bender R, Günster C, Gutschmidt S, Selke GW, Sawicki PT (2009) Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 52:1732–1744. PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lin H-W, Tseng C-H (2014) A review on the relationship between SGLT2 inhibitors and Cancer. Int J Endocrinol 2014:719578–719576. PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ptaszynska A, Cohen SM, Messing EM, Reilly TP, Johnsson E, Johnsson K (2015) Assessing bladder Cancer risk in type 2 diabetes clinical trials: the Dapagliflozin drug development program as a “case study”. Diabetes Ther Res Treat Educ Diabetes mellitus Relat Disord 6:357–375. CrossRefGoogle Scholar
  85. 85.
    Tseng Y-H, Tsan Y-T, Chan W-C, Sheu WHH, Chen PC (2015) Use of an α-Glucosidase inhibitor and the risk of colorectal Cancer in patients with diabetes mellitus: a Nationwide, population-based cohort study. Diabetes Care 38:2068–2074. PubMedCrossRefGoogle Scholar
  86. 86.
    Dowling RJO, Goodwin PJ, Stambolic V (2011) Understanding the benefit of metformin use in cancer treatment. BMC Med 9:33. PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25. PubMedCrossRefGoogle Scholar
  88. 88.
    Dowling RJO, Niraula S, Stambolic V, Goodwin PJ (2012) Metformin in cancer: translational challenges. J Mol Endocrinol 48:R31–R43. PubMedCrossRefGoogle Scholar
  89. 89.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226. PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD (2017) Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab 25:463–471. PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Xie J, Wang X, Proud CG (2016) mTOR inhibitors in cancer therapy. F1000Research 5:2078. CrossRefGoogle Scholar
  92. 92.
    Ben Sahra I, Regazzetti C, Robert G, Laurent K, le Marchand-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S, Bost F (2011) Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 71:4366–4372. PubMedCrossRefGoogle Scholar
  93. 93.
    Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA (2010) Metformin prevents tobacco carcinogen--induced lung tumorigenesis. Cancer Prev Res Phila (Phila) 3:1066–1076. CrossRefGoogle Scholar
  94. 94.
    Hirsch HA, Iliopoulos D, Struhl K (2013) Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A 110:972–977. PubMedCrossRefGoogle Scholar
  95. 95.
    Malik S, Upadhyaya PK, Miglani S (2011) Thiazolidinediones: a Plethro of biological load. Int J PharmTech Res 3:62–75Google Scholar
  96. 96.
    Sauter M, Kastenmüller K, Belling F, Wörnle M, Ladurner R, Mussack T, Sitter T (2012) Activation of peroxisome proliferator-activated receptor-gamma by Glitazones reduces the expression and release of monocyte Chemoattractant Protein-1 in human Mesothelial cells. Mediat Inflamm 2012:1–6. CrossRefGoogle Scholar
  97. 97.
    Yanai H, Adachi H (2017) The low-dose (7.5 mg/day) pioglitazone therapy. J Clin Med Res 9:821–825. PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Davidson MA, Mattison DR, Azoulay L, Krewski D (2018) Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 48(1):52–108.
  99. 99.
    Chang C-H, Lin J-W, Wu L-C, Lai MS, Chuang LM, Arnold Chan K (2012) Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. mellitus Hepatol Baltim Md 55:1462–1472. CrossRefGoogle Scholar
  100. 100.
    Mamtani R, Haynes K, Bilker WB, Vaughn DJ, Strom BL, Glanz K, Lewis JD (2012) Association between longer therapy with Thiazolidinediones and risk of bladder Cancer: a cohort study. JNCI J Natl Cancer Inst 104:1411–1421. PubMedCrossRefGoogle Scholar
  101. 101.
    Blanquicett C, Roman J, Hart CM (2008) Thiazolidinediones as anti-cancer agents. Cancer Ther 6:25–34PubMedPubMedCentralGoogle Scholar
  102. 102.
    Chou F-S, Wang P-S, Kulp S, Pinzone JJ (2007) Effects of thiazolidinediones on differentiation, proliferation, and apoptosis. Mol Cancer Res MCR 5:523–530. PubMedCrossRefGoogle Scholar
  103. 103.
    Okumura T (2010) Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol 45:1097–1102. PubMedCrossRefGoogle Scholar
  104. 104.
    Wu C-W, Farrell GC, Yu J (2012) Functional role of peroxisome-proliferator-activated receptor γ in hepatocellular carcinoma: PPARγ in hepatocellular carcinoma. J Gastroenterol Hepatol 27:1665–1669. PubMedCrossRefGoogle Scholar
  105. 105.
    Johnson JA, Gale EAM (2010) Diabetes, insulin use, and Cancer risk: are observational studies part of the solution-or part of the problem? Diabetes 59:1129–1131. PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Platts J (2010) Insulin therapy and cancer risk in diabetes mellitus. Clin Med 10:509–512. CrossRefGoogle Scholar
  107. 107.
    Mannucci E (2012) Insulin therapy and Cancer in type 2 diabetes. ISRN Endocrinol 2012:1–12. CrossRefGoogle Scholar
  108. 108.
    Home P (2013) Insulin therapy and Cancer. Diabetes Care 36:S240–S244. PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Morrione A, Valentinis B, Xu SQ, Yumet G, Louvi A, Efstratiadis A, Baserga R (1997) Insulin-like growth factor II stimulates cell proliferation through the insulin receptor. Proc Natl Acad Sci U S A 94:3777–3782PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tokajuk A, Krzyżanowska-Grycel E, Tokajuk A, Grycel S, Sadowska A, Car H (2015) Anti-diabetic drugs and risk of cancer. Pharmacol Rep 67:1240–1250. PubMedCrossRefGoogle Scholar
  111. 111.
    Tseng C-H, Lee K-Y, Tseng F-H (2015) An updated review on Cancer risk associated with Incretin Mimetics and enhancers. J Environ Sci Health Part C 33:67–124. CrossRefGoogle Scholar
  112. 112.
    Liu Z, Habener JF (2008) Glucagon-like Peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic Beta cell proliferation. J Biol Chem 283:8723–8735. PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Funch D, Gydesen H, Tornøe K, Major-Pedersen A, Chan KA (2014) A prospective, claims-based assessment of the risk of pancreatitis and pancreatic cancer with liraglutide compared to other anti-diabetic drugs. Diabetes Obes Metab 16:273–275.
  114. 114.
    Proks P, Reimann F, Green N et al (2002) Sulfonylurea stimulation of insulin secretion. Diabetes 51:S368–S376. PubMedCrossRefGoogle Scholar
  115. 115.
    Tseng C-H (2012) Thyroid cancer risk is not increased in diabetic patients. PLoS One 7:e53096. PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E (2009) Sulphonylureas and cancer: a case–control study. Acta Diabetol 46:279–284. PubMedCrossRefGoogle Scholar
  117. 117.
    Li D, Yeung SJ, Hassan MM et al (2009) Anti-diabetic therapies affect risk of pancreatic Cancer. Gastroenterology 137:482–488. PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pasello G, Urso L, Conte P, Favaretto A (2013) Effects of sulfonylureas on tumor growth: a review of the literature. The Oncologist 18:1118–1125. PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bischoff H (1995) The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Investig Med 18:303–311Google Scholar
  120. 120.
    Kumar V, Prakash O, Kumar S, Narwal S (2011) α-glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 5:19–29. PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Matsuura H, Asakawa C, Kurimoto M, Mizutani J (2002) α-Glucosidase inhibitor from the seeds of balsam pear ( Momordica charantia ) and the fruit bodies of Grifola frondosa. Biosci Biotechnol Biochem 66:1576–1578. CrossRefGoogle Scholar
  122. 122.
    Lai S-W, Liao K-F, Chen P-C, Tsai PY, Hsieh DPH, Chen CC (2012) Antidiabetes drugs correlate with decreased risk of lung Cancer: a population-based observation in Taiwan. Clin Lung Cancer 13:143–148. PubMedCrossRefGoogle Scholar
  123. 123.
    Chao EC, Henry RR (2010) SGLT2 inhibition — a novel strategy for diabetes treatment. Nat Rev Drug Discov 9:551–559. PubMedCrossRefGoogle Scholar
  124. 124.
    Taylor SR, Harris KB (2013) The clinical efficacy and safety of sodium glucose Cotransporter-2 inhibitors in adults with type 2 diabetes mellitus. Pharmacotherapy 33:984–999. CrossRefGoogle Scholar
  125. 125.
    Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF (2010) Dapagliflozin Monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33:2217–2224.
  126. 126.
    LeRoith D, Scheinman E, Bitton-Worms K (2011) The role for insulin and insulin-like growth factors in the increased risk of Cancer in diabetes. Rambam Maimonides Med J 2:e0043.
  127. 127.
    Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes mellitus who use sulfonylureas or insulin. Diabetes Care 29:254–258Google Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyAssam UniversitySilcharIndia

Personalised recommendations