Slit/Robo Signaling Pathway in Cancer; a New Stand Point for Cancer Treatment

  • Zahra Koohini
  • Zohreh Koohini
  • Shahram Teimourian


Angiogenesis and metastasis are two critical steps for cancer cells survival and migration. The microenvironment of tumor sphere induces new blood vessels formation for enhancing tumor mass. Preexisting capillaries and postcapillary venules in tumors bring about new blood vessels. ROBO1-ROBO4 are transmembrane receptors family which act as guidance molecules of the nervous system. The SLITs family is secreted glycoproteins that bind to these receptors. SLIT-ROBO signaling pathway plays an important role in neurogenesis and immune response. Linkage between ROBOs and their ligands (SLITs) induce chemorepllent signal for regulation of axon guidance and leukocyte cell migration, recent finding shows that it is also involved in endothelial cell migration and angiogenesis in various type of cancers. In this article we review recent finding of SLIT-ROBO pathway in angiogenesis and metastasis.


Slite Robo Tumor angiogenesis Tumor markers 


Compliance with Ethical Standards

Conflict of Interests

The authors declare that there is no conflict of interests from the publication of this article.


  1. 1.
    Ballard MS, Hinck L (2012) A roundabout way to cancer. Adv Cancer Res 114:187–235Google Scholar
  2. 2.
    Greenberg JM, Thompson FY, Brooks SK, Shannon JM, Akeson AL (2004) Slit and robo expression in the developing mouse lung. Dev Dyn 230(2):350–360Google Scholar
  3. 3.
    Hinck L (2004) The versatile roles of "axon guidance" cues in tissue morphogenesis. Dev Cell 7(6):783–793Google Scholar
  4. 4.
    Medioni C, Bertrand N, Mesbah K, Hudry B, Dupays L, Wolstein O, Washkowitz AJ, Papaioannou VE, Mohun TJ, Harvey RP, Zaffran S (2010) Expression of slit and Robo genes in the developing mouse heart. Dev Dyn 239(12):3303–3311Google Scholar
  5. 5.
    Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS et al (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 6(6):795–806Google Scholar
  6. 6.
    Legg JA, Herbert JM, Clissold P, Bicknell R (2008) Slits and roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis 11(1):13–21Google Scholar
  7. 7.
    London NR, Li DY (2011) Robo4-dependent slit signaling stabilizes the vasculature during pathologic angiogenesis and cytokine storm. Curr Opin Hematol 18(3):186–190Google Scholar
  8. 8.
    Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang ZH, Zhang XC, Rao Y (2001) The neuronal repellent slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410(6831):948–952Google Scholar
  9. 9.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364Google Scholar
  10. 10.
    Jain RK (2002) Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin Oncol 29(6 Suppl 16):3–9Google Scholar
  11. 11.
    Nusslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster : I. zygotic loci on the second chromosome. Wilehm Roux Arch Dev Biol 193(5):267–282Google Scholar
  12. 12.
    Chedotal A (2007) Slits and their receptors. Adv Exp Med Biol 621:65–80Google Scholar
  13. 13.
    Blockus H, Chedotal A (2016) Slit-Robo signaling. Development 143(17):3037–3044Google Scholar
  14. 14.
    Rothberg JM, Artavanis-Tsakonas S (1992) Modularity of the slit protein. Characterization of a conserved carboxy-terminal sequence in secreted proteins and a motif implicated in extracellular protein interactions. J Mol Biol 227(2):367–370Google Scholar
  15. 15.
    Zhang B, Dietrich UM, Geng JG, Bicknell R, Esko JD, Wang L (2009) Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood 114(19):4300–4309Google Scholar
  16. 16.
    Wu MF, Liao CY, Wang LY, Chang JT (2017) The role of slit-Robo signaling in the regulation of tissue barriers. Tissue Barriers 5(2):e1331155Google Scholar
  17. 17.
    Kidd T, Bland KS, Goodman CS (1999) Slit is the midline repellent for the robo receptor in Drosophila. Cell 96(6):785–794Google Scholar
  18. 18.
    Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675Google Scholar
  19. 19.
    Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92(2):205–215Google Scholar
  20. 20.
    Yadav SS, Narayan G (2014) Role of ROBO4 signalling in developmental and pathological angiogenesis. Biomed Res Int 2014:683025Google Scholar
  21. 21.
    Okada Y, Yano K, Jin E, Funahashi N, Kitayama M, Doi T, Spokes K, Beeler DL, Shih SC, Okada H, Danilov TA, Maynard E, Minami T, Oettgen P, Aird WC (2007) A three-kilobase fragment of the human Robo4 promoter directs cell type-specific expression in endothelium. Circ Res 100(12):1712–1722Google Scholar
  22. 22.
    Zelina P, Blockus H, Zagar Y, Peres A, Friocourt F, Wu Z et al (2014) Signaling switch of the axon guidance receptor Robo3 during vertebrate evolution. Neuron 84(6):1258–1272Google Scholar
  23. 23.
    Zhang F, Moniz HA, Walcott B, Moremen KW, Linhardt RJ, Wang L (2013) Characterization of the interaction between Robo1 and heparin and other glycosaminoglycans. Biochimie 95(12):2345–2353Google Scholar
  24. 24.
    Seki M, Watanabe A, Enomoto S, Kawamura T, Ito H, Kodama T, Hamakubo T, Aburatani H (2010) Human ROBO1 is cleaved by metalloproteinases and gamma-secretase and migrates to the nucleus in cancer cells. FEBS Lett 584(13):2909–2915Google Scholar
  25. 25.
    Coleman HA, Labrador JP, Chance RK, Bashaw GJ (2010) The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline. Development 137(14):2417–2426Google Scholar
  26. 26.
    Nguyen Ba-Charvet KT, Brose K, Ma L, Wang KH, Marillat V, Sotelo C et al (2001) Diversity and specificity of actions of Slit2 proteolytic fragments in axon guidance. J Neurosci 21(12):4281–4289Google Scholar
  27. 27.
    Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, Tessier-Lavigne M (1999) Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96(6):771–784Google Scholar
  28. 28.
    Delloye-Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, Kindbeiter K, Yoshida Y, Zagar Y, Kong Y, Jones YE, Falk J, Chédotal A, Castellani V (2015) PlexinA1 is a new slit receptor and mediates axon guidance function of slit C-terminal fragments. Nat Neurosci 18(1):36–45Google Scholar
  29. 29.
    Wright KM, Lyon KA, Leung H, Leahy DJ, Ma L, Ginty DD (2012) Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 76(5):931–944Google Scholar
  30. 30.
    Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA, Rao RR, Chédotal A, Kajimura S, Gygi SP, Spiegelman BM (2016) A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab 23(3):454–466Google Scholar
  31. 31.
    Dascenco D, Erfurth ML, Izadifar A, Song M, Sachse S, Bortnick R, Urwyler O, Petrovic M, Ayaz D, He H, Kise Y, Thomas F, Kidd T, Schmucker D (2015) Slit and receptor tyrosine phosphatase 69D confer spatial specificity to axon branching via Dscam1. Cell 162(5):1140–1154Google Scholar
  32. 32.
    Holmes GP, Negus K, Burridge L, Raman S, Algar E, Yamada T, Little MH (1998) Distinct but overlapping expression patterns of two vertebrate slit homologs implies functional roles in CNS development and organogenesis. Mech Dev 79(1–2):57–72Google Scholar
  33. 33.
    Latil A, Chene L, Cochant-Priollet B, Mangin P, Fournier G, Berthon P et al (2003) Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int J Cancer 103(3):306–315Google Scholar
  34. 34.
    Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG (2003) Induction of tumor angiogenesis by slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4(1):19–29Google Scholar
  35. 35.
    Yuan W, Zhou L, Chen JH, Wu JY, Rao Y, Ornitz DM (1999) The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev Biol 212(2):290–306Google Scholar
  36. 36.
    Dallol A, Morton D, Maher ER, Latif F (2003) SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal carcinoma cells. Cancer Res 63(5):1054–1058Google Scholar
  37. 37.
    Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY (2003) Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 261(1):251–267Google Scholar
  38. 38.
    Pircher A, Fiegl M, Untergasser G, Heidegger I, Medinger M, Kern J et al (2013) Favorable prognosis of operable non-small cell lung cancer [NSCLC] patients harboring an increased expression of tumor endothelial markers [TEMs]. Lung cancer (Amsterdam, Netherlands) 81(2):252–258Google Scholar
  39. 39.
    Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14(4):448–453Google Scholar
  40. 40.
    Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79(4):547–552Google Scholar
  41. 41.
    Howitt JA, Clout NJ, Hohenester E (2004) Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of slit. EMBO J 23(22):4406–4412Google Scholar
  42. 42.
    Kaur S, Castellone MD, Bedell VM, Konar M, Gutkind JS, Ramchandran R (2006) Robo4 signaling in endothelial cells implies attraction guidance mechanisms. J Biol Chem 281(16):11347–11356Google Scholar
  43. 43.
    Garrett TA, Van Buul JD, Burridge K (2007) VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res 313(15):3285–3297Google Scholar
  44. 44.
    Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8(11):1223–1234Google Scholar
  45. 45.
    Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC, Lim CJ, Chen H, Zhang Q, Schultz PG, Hayallah AM, Thomas KR, Famulok M, Zhang K, Ginsberg MH, Li DY (2009) Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 11(11):1325–1331Google Scholar
  46. 46.
    Grossmann AH, Yoo JH, Clancy J, Sorensen LK, Sedgwick A, Tong Z et al (2013) The small GTPase ARF6 stimulates beta-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal 6(265):ra14Google Scholar
  47. 47.
    Zhu W, London NR, Gibson CC, Davis CT, Tong Z, Sorensen LK, Shi DS, Guo J, Smith MCP, Grossmann AH, Thomas KR, Li DY (2012) Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability. Nature 492(7428):252–255Google Scholar
  48. 48.
    Davis CT, Zhu W, Gibson CC, Bowman-Kirigin JA, Sorensen L, Ling J et al (2014) ARF6 inhibition stabilizes the vasculature and enhances survival during endotoxic shock. J Immunol 192(12):6045–6052Google Scholar
  49. 49.
    Bolton SJ, Anthony DC, Perry VH (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86(4):1245–1257Google Scholar
  50. 50.
    Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96(1):34–40Google Scholar
  51. 51.
    Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV (2003) Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via rho and rho kinase. J Cell Sci 116(Pt 22):4615–4628Google Scholar
  52. 52.
    Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100(5):2645–2650Google Scholar
  53. 53.
    Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 1788(4):872–891Google Scholar
  54. 54.
    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’Connor STF, Chin AR, Yen Y, Wang Y, Marcusson EG, Chu P, Wu J, Wu X, Li AX, Li Z, Gao H, Ren X, Boldin MP, Lin PC, Wang SE (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515Google Scholar
  55. 55.
    Zhao H, Ahirwar DK, Oghumu S, Wilkie T, Powell CA, Nasser MW, Satoskar AR, Li DY, Ganju RK (2016) Endothelial Robo4 suppresses breast cancer growth and metastasis through regulation of tumor angiogenesis. Mol Oncol 10(2):272–281Google Scholar
  56. 56.
    Cai H, Xue Y, Li Z, Hu Y, Wang Z, Liu W et al (2015) Roundabout4 suppresses glioma-induced endothelial cell proliferation, migration and tube formation in vitro by inhibiting VEGR2-mediated PI3K/AKT and FAK signaling pathways. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 35(5):1689–1705Google Scholar
  57. 57.
    Dickinson RE, Fegan KS, Ren X, Hillier SG, Duncan WC (2011) Glucocorticoid regulation of SLIT/ROBO tumour suppressor genes in the ovarian surface epithelium and ovarian cancer cells. PloS one 6(11):e27792Google Scholar
  58. 58.
    Avci ME, Konu O, Yagci T (2008) Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression. BMC Cancer 8:392Google Scholar
  59. 59.
    Kaur S, Samant GV, Pramanik K, Loscombe PW, Pendrak ML, Roberts DD, Ramchandran R (2008) Silencing of directional migration in roundabout4 knockdown endothelial cells. BMC Cell Biol 9:61Google Scholar
  60. 60.
    Koch AW, Mathivet T, Larrivee B, Tong RK, Kowalski J, Pibouin-Fragner L et al (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20(1):33–46Google Scholar
  61. 61.
    Klagsbrun M, Eichmann A (2005) A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 16(4–5):535–548Google Scholar
  62. 62.
    Yiin JJ, Hu B, Jarzynka MJ, Feng H, Liu KW, Wu JY, Ma HI, Cheng SY (2009) Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity. Neuro-Oncology 11(6):779–789Google Scholar
  63. 63.
    Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, Xiong WC, Rao Y (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the slit-Robo pathway. Cell 107(2):209–221Google Scholar
  64. 64.
    Hu H, Li M, Labrador JP, McEwen J, Lai EC, Goodman CS, Bashaw GJ (2005) Cross GTPase-activating protein [CrossGAP]/Vilse links the roundabout receptor to Rac to regulate midline repulsion. Proc Natl Acad Sci U S A 102(12):4613–4618Google Scholar
  65. 65.
    Lundstrom A, Gallio M, Englund C, Steneberg P, Hemphala J, Aspenstrom P et al (2004) Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev 18(17):2161–2171Google Scholar
  66. 66.
    Tole S, Mukovozov IM, Huang YW, Magalhaes MA, Yan M, Crow MR et al (2009) The axonal repellent, Slit2, inhibits directional migration of circulating neutrophils. J Leukoc Biol 86(6):1403–1415Google Scholar
  67. 67.
    Martinez-Quiles N, Rohatgi R, Anton IM, Medina M, Saville SP, Miki H et al (2001) WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat Cell Biol 3(5):484–491Google Scholar
  68. 68.
    Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11(21):1645–1655Google Scholar
  69. 69.
    Han SP, Yap AS (2012) The cytoskeleton and classical cadherin adhesions. Subcell Biochem 60:111–135Google Scholar
  70. 70.
    Ratheesh A, Yap AS (2012) A bigger picture: classical cadherins and the dynamic actin cytoskeleton. Nat Rev Mol Cell Biol 13(10):673–679Google Scholar
  71. 71.
    Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8(5):629–642Google Scholar
  72. 72.
    Zhong C, Mei Z, Yong X (2017) Cadherin switching induced by P120-catenin can promote the migration and invasion of oral squamous cell cancer cells. Hua Xi Kou Qiang Yi Xue Za Zhi 35(2):183–186Google Scholar
  73. 73.
    Bashaw GJ, Kidd T, Murray D, Pawson T, Goodman CS (2000) Repulsive axon guidance: Abelson and enabled play opposing roles downstream of the roundabout receptor. Cell 101(7):703–715Google Scholar
  74. 74.
    Wills Z, Emerson M, Rusch J, Bikoff J, Baum B, Perrimon N, van Vactor D (2002) A Drosophila homolog of cyclase-associated proteins collaborates with the Abl tyrosine kinase to control midline axon pathfinding. Neuron 36(4):611–622Google Scholar
  75. 75.
    O'Donnell MP, Bashaw GJ (2013) Distinct functional domains of the Abelson tyrosine kinase control axon guidance responses to netrin and slit to regulate the assembly of neural circuits. Development [Cambridge, England] 140(13):2724–2733Google Scholar
  76. 76.
    Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J (2007) Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate slit-induced modulation of adhesion and transcription. Nat Cell Biol 9(8):883–892Google Scholar
  77. 77.
    Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ, Geng JG (2011) Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 21(4):609–626Google Scholar
  78. 78.
    Prasad A, Paruchuri V, Preet A, Latif F, Ganju RK (2008) Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem 283(39):26624–26633Google Scholar
  79. 79.
    Tseng RC, Lee SH, Hsu HS, Chen BH, Tsai WC, Tzao C, Wang YC (2010) SLIT2 attenuation during lung cancer progression deregulates beta-catenin and E-cadherin and associates with poor prognosis. Cancer Res 70(2):543–551Google Scholar
  80. 80.
    Feng Y, Feng L, Yu D, Zou J, Huang Z (2016) srGAP1 mediates the migration inhibition effect of Slit2-Robo1 in colorectal cancer. J Exp Clin Cancer Res 35(1):191Google Scholar

Copyright information

© Arányi Lajos Foundation 2019

Authors and Affiliations

  • Zahra Koohini
    • 1
  • Zohreh Koohini
    • 2
  • Shahram Teimourian
    • 1
  1. 1.Department of Medical Genetics, School of MedicineIran University of Medical SciencesTehranIran
  2. 2.Department of Immunology, School of MedicineMazandaran University of Medical SciencesSariIran

Personalised recommendations