Advertisement

Pathology & Oncology Research

, Volume 25, Issue 1, pp 361–368 | Cite as

Expression of Glut-1 in Malignant Melanoma and Melanocytic Nevi: an Immunohistochemical Study of 400 Cases

  • Miroslav Důra
  • Kristýna Němejcová
  • Radek Jakša
  • Michaela Bártů
  • Ondřej Kodet
  • Ivana Tichá
  • Romana Michálková
  • Pavel DundrEmail author
Original Article

Abstract

The glucose transporter-1 (Glut-1) is a cell membrane glycoprotein involved in glucose uptake. An increased expression of Glut-1 is an important cell adaptation mechanism against hypoxia. An upregulation of Glut-1 can be found in several types of malignant tumors, which are able to reprogram their metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect). However, the data regarding melanocytic lesions is equivocal. We performed comprehensive immunohistochemical analysis of the Glut-1 expression in 225 malignant melanomas (MM) and 175 benign nevi. Only the membranous expression of Glut-1 was regarded as positive. The expression of Glut-1 (the cut-off for positivity was determined as H-score 15) was found in 69/225 malignant melanomas. The number of positive cases and the H-score of Glut-1 increased where there was a higher Breslow thickness (p < 0.00001) when comparing pT1- pT4 MM groups. All benign nevi were classified as negative. In conclusion, the membranous expression of Glut-1 is a common feature of a malignant melanoma but this type of expression is very rare in benign melanocytic nevi. Our results suggest that the membranous expression of Glut-1 can be used as a surrogate marker in the assessing of the biological nature of benign and malignant melanocytic lesions. However, despite its high specificity, the sensitivity of this marker is relatively low. Moreover, due to the fact that the increased expression of Glut-1 correlates with a shorter survival period (10-year disease free survival, recurrence free survival and metastasis free survival and MFS), it can be used as a prognostically adverse factor.

Keywords

Glut-1 Malignant melanoma Melanocytic nevus Immunohistochemistry Follow-up 

Notes

Funding

This work was supported by Ministry of Health, Czech Republic (Conceptual development of research organization 64,165, General University Hospital in Prague, and by project AZV 16-30954A), by Charles University (Project Progres Q28/LF1 and SVV 260367), and by OPPK (Research Laboratory of Tumor Diseases, CZ.2.16/3.1.00/24509). The funding bodies do not play any role in the design of the study and collection, analysis, and interpretation of the data and in writing of the manuscript.

Compliance with Ethical Standards

In compliance with the Helsinki Declaration, the project has been approved by Ethics Committee of the General University Hospital, Prague (reference number č.j. 56/15 Grant VES 2016 AZV 1. LF UK).

Competing Interests

The authors declare that they have no competing interests.

References

  1. 1.
    Thorens B, Mueckler M (2010) Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab298:E141–E145Google Scholar
  2. 2.
    Iwasaki K, Yabushita H, Ueno T, Wakatsuki A (2015) Role of hypoxia-inducible factor-1alpha, carbonic anhydrase-IX, glucose transporter-1 and vascular endothelial growth factor associated with lymph node metastasis and recurrence in patients with locally advanced cervical cancer. Oncol Lett 10:1970–1978CrossRefGoogle Scholar
  3. 3.
    Ma X, Hui Y, Lin L, Wu Y, Zhang X, Liu P (2015) Clinical significance of COX-2, GLUT-1 and VEGF expressions in endometrial cancer tissues. Pak J Med Sci 31:280–284CrossRefGoogle Scholar
  4. 4.
    Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J (1996) Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 56:1164–1167Google Scholar
  5. 5.
    Nemejcova K, Rosmusova J, Bartu M, Dura M, Ticha I, Dundr P (2017) Expression of Glut-1 in normal endometrium and endometrial lesions. Int J Surg Pathol 25:389–396CrossRefGoogle Scholar
  6. 6.
    Voldstedlund M, Dabelsteen E (1997) Expression of GLUT1 in stratified squamous epithelia and oral carcinoma from humans and rats. APMIS 105:537–545CrossRefGoogle Scholar
  7. 7.
    Parente P, Coli A, Massi G, Mangoni A, Fabrizi MM, Bigotti G (2008) Immunohistochemical expression of the glucose transporters Glut-1 and Glut-3 in human malignant melanomas and benign melanocytic lesions. J Exp Clin Cancer Res 27:34CrossRefGoogle Scholar
  8. 8.
    Carvalho KC, Cunha IW, Rocha RM, Ayala FR, Cajaiba MM, Begnami MD et al (2011) GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics 66:965–972CrossRefGoogle Scholar
  9. 9.
    Wachsberger PR, Gressen EL, Bhala A, Bobyock SB, Storck C, Coss RA, al e (2002) Variability in glucose transporter-1 levels and hexokinase activity in human melanoma. Melanoma Res 12:35–43CrossRefGoogle Scholar
  10. 10.
    Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM et al (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21:3798–3807CrossRefGoogle Scholar
  11. 11.
    Dawes SM, Tsai S, Gittleman H, Barnholtz-Sloan JS, Bordeaux JS (2016) Racial disparities in melanoma survival. J Am Acad Dermatol 75:983–991CrossRefGoogle Scholar
  12. 12.
    Kwong LN, Davies MA (2014) Targeted therapy for melanoma: rational combinatorial approaches. Oncogene 33:1–9CrossRefGoogle Scholar
  13. 13.
    Pavri SN, Clune J, Ariyan S, Narayan D (2016) Malignant Melanoma: Beyond the Basics. Plast Reconstr Surg 138:330e-340eGoogle Scholar
  14. 14.
    Gerami P, Li G, Pouryazdanparast P, Blondin B, Beilfuss B, Slenk C et al (2012) A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol 36:808–817CrossRefGoogle Scholar
  15. 15.
    Wang L, Rao M, Fang Y, Hameed M, Viale A, Busam K et al (2013) A genome-wide high-resolution array-CGH analysis of cutaneous melanoma and comparison of array-CGH to FISH in diagnostic evaluation. J Mol Diagn 15:581–591CrossRefGoogle Scholar
  16. 16.
    Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T et al (2009) Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol 33:1146–1156CrossRefGoogle Scholar
  17. 17.
    Bedikian AY, Millward M, Pehamberger H, Conry R, Gore M, Trefzer U et al (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen melanoma study group. J Clin Oncol 24:4738–4745CrossRefGoogle Scholar
  18. 18.
    Dar AA, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M et al (2016) BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci U S A 113:6254–6258CrossRefGoogle Scholar
  19. 19.
    Boni R, Doguoglu A, Burg G, Muller B, Dummer R (1996) MIB-1 immunoreactivity correlates with metastatic dissemination in primary thick cutaneous melanoma. J Am Acad Dermatol 35:416–418CrossRefGoogle Scholar
  20. 20.
    Gimotty PA, Van Belle P, Elder DE, Murry T, Montone KT, Xu X et al (2005) Biologic and prognostic significance of dermal Ki67 expression, mitoses, and tumorigenicity in thin invasive cutaneous melanoma. J Clin Oncol 23:8048–8056CrossRefGoogle Scholar
  21. 21.
    Ladstein RG, Bachmann IM, Straume O, Akslen LA (2010) Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma. BMC Cancer 10:140CrossRefGoogle Scholar
  22. 22.
    Mihic-Probst D, Ikenberg K, Tinguely M, Schraml P, Behnke S, Seifert B et al (2012) Tumor cell plasticity and angiogenesis in human melanomas. PLoS One 7:e33571CrossRefGoogle Scholar
  23. 23.
    Slominski A, Kim TK, Brozyna AA, Janjetovic Z, Brooks DL, Schwab LP et al (2014) The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1alpha expression and HIF-dependent attendant pathways. Arch Biochem Biophys 563:79–93CrossRefGoogle Scholar
  24. 24.
    Ilmonen S, Hernberg M, Pyrhonen S, Tarkkanen J, Asko-Seljavaara S (2005) Ki-67, Bcl-2 and p53 expression in primary and metastatic melanoma. Melanoma Res 15:375–381CrossRefGoogle Scholar
  25. 25.
    Matin RN, Chikh A, Chong SL, Mesher D, Graf M, Sanza P, et al. (2013) p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis. J Exp Med 210:581–603Google Scholar
  26. 26.
    Rieger E, Hofmann-Wellenhof R, Soyer HP, Kofler R, Cerroni L, Smolle J et al (1993) Comparison of proliferative activity as assessed by proliferating cell nuclear antigen (PCNA) and Ki-67 monoclonal antibodies in melanocytic skin lesions. A quantitative immunohistochemical study. J Cutan Pathol 20:229–236CrossRefGoogle Scholar
  27. 27.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  28. 28.
    Klement RJ, Kammerer U (2011) Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond) 8:75CrossRefGoogle Scholar
  29. 29.
    Annibaldi A, Widmann C (2010) Glucose metabolism in cancer cells. Curr Opin Clin Nutr Metab Care 13:466–470CrossRefGoogle Scholar
  30. 30.
    Pelicano H, RH X, Du M, Feng L, Sasaki R, Carew JS et al (2006) Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 175:913–923CrossRefGoogle Scholar
  31. 31.
    Robey RB, Hay N (2009) Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19:25–31CrossRefGoogle Scholar
  32. 32.
    Dronca RS, Allred JB, Perez DG, Nevala WK, Lieser EA, Thompson M et al (2014) Phase II study of temozolomide (TMZ) and everolimus (RAD001) therapy for metastatic melanoma: a north central cancer treatment group study, N0675. Am J Clin Oncol 37:369–376CrossRefGoogle Scholar
  33. 33.
    Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y (2014) 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 355:176–183CrossRefGoogle Scholar
  34. 34.
    Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H et al (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11:1672–1682CrossRefGoogle Scholar
  35. 35.
    Brown RS Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72:2979–2985Google Scholar
  36. 36.
    Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C et al (1998) GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer 83:34–40CrossRefGoogle Scholar
  37. 37.
    Nagase Y, Takata K, Moriyama N, Aso Y, Murakami T, Hirano H (1995) Immunohistochemical localization of glucose transporters in human renal cell carcinoma. J Urol 153:798–801CrossRefGoogle Scholar
  38. 38.
    Ogawa J, Inoue H, Koide S (1997) Glucose-transporter-type-I-gene amplification correlates with sialyl-Lewis-X synthesis and proliferation in lung cancer. Int J Cancer 74:189–192CrossRefGoogle Scholar
  39. 39.
    Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N et al (1990) Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170:223–230CrossRefGoogle Scholar
  40. 40.
    Baer SC, Casaubon L, Younes M (1997) Expression of the human erythrocyte glucose transporter Glut1 in cutaneous neoplasia. J Am Acad Dermatol 37:575–577CrossRefGoogle Scholar
  41. 41.
    Park SG, Lee JH, Lee WA, Han KM (2012) Biologic correlation between glucose transporters, hexokinase-II, Ki-67 and FDG uptake in malignant melanoma. Nucl Med Biol 39:1167–1172CrossRefGoogle Scholar
  42. 42.
    Yamada K, Brink I, Bisse E, Epting T, Engelhardt R (2005) Factors influencing [F-18] 2-fluoro-2-deoxy-D-glucose (F-18 FDG) uptake in melanoma cells: the role of proliferation rate, viability, glucose transporter expression and hexokinase activity. J Dermatol 32:316–334CrossRefGoogle Scholar
  43. 43.
    Lee JH, Gulec SA, Kyshtoobayeva A, Sim MS, Morton DL (2009) Biological factors, tumor growth kinetics, and survival after metastasectomy for pulmonary melanoma. Ann Surg Oncol 16:2834–2839CrossRefGoogle Scholar
  44. 44.
    Eichhoff OM, Zipser MC, Xu M, Weeraratna AT, Mihic D, Dummer R et al (2010) The immunohistochemistry of invasive and proliferative phenotype switching in melanoma: a case report. Melanoma Res 20:349–355CrossRefGoogle Scholar
  45. 45.
    Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  1. 1.Institute of Pathology, First Faculty of MedicineCharles University and General University Hospital in PraguePrague 2Czech Republic
  2. 2.Department of Dermatology and Venereology, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
  3. 3.Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic

Personalised recommendations